【題目】在平面直角坐標(biāo)系中,矩形OABC的邊OA、OC分別落在x軸、y軸上,O為坐標(biāo)原點(diǎn),且OA=8,OC=4,連接AC,將矩形OABC對折,使點(diǎn)A與點(diǎn)C重合,折痕ED與BC交于點(diǎn)D,交OA于點(diǎn)E,連接AD,如圖①.
(1)求點(diǎn)D的坐標(biāo)和AD所在直線的函數(shù)關(guān)系式;
(2)⊙M的圓心M始終在直線AC上(點(diǎn)A除外),且⊙M始終與x軸相切,如圖②.
①求證:⊙M與直線AD相切;
②圓心M在直線AC上運(yùn)動,在運(yùn)動過程中,能否與y軸也相切?如果能相切,求出此時⊙M與x軸、y軸和直線AD都相切時的圓心M的坐標(biāo);如果不能相切,請說明理由.

【答案】
(1)解:設(shè)CE=t,

∵矩形OABC對折,使A與C重合(折痕為ED),OA=8,OC=4

∴CE=AE=t,∠AED=∠CED,

∴OE=OA﹣AE=8﹣t,

在Rt△OCE中,∵OE2+OC2=CE2,

∴42+(8﹣t)2=t2

解得t=5,

即CE=AE=5

∵BC∥OA,

∴∠CDE=∠AED,

∴∠CDE=∠CED,

∴CD=CE=5.

∴D(5,4),

設(shè)直線AD的解析式 為y=kx+b,

將A(8,0)、D(5,4)代入解析式可得

解得

AD所在直線的函數(shù)關(guān)系式為


(2)解:①∵四邊形OABC為矩形,

∴BC∥OA,

∴∠DCA=∠CAO,

又∵矩形OABC對折,使A與C重合(折痕為ED),

∴DE為AC的垂直平分線

∴CD=AD,

∴∠DCA=∠DAC,

∴∠DAC=∠CAO,

∴AC平分∠DAO,

∴AC上的點(diǎn)到直線AO和直線AD的距離相等,

∴M點(diǎn)到直線AO和直線AD的距離相等,

∵⊙M始終與x軸相切,

∴M點(diǎn)到直線AO的距離為半徑r,

∴M點(diǎn)到直線AD的距離也為半徑r,

∴直線AD與⊙M相切;

②⊙M在直線AC上運(yùn)動,在運(yùn)動過程中,能與y軸也相切.

如果⊙M與y軸相切,可知圓心M到y(tǒng)軸的距離為半徑,

由①可知M(8﹣2r,r)所以只需使8﹣2r=r,

即當(dāng)r為 時,⊙M與x軸、y軸和直線AD都相切,

∴M點(diǎn)的坐標(biāo)為( ,


【解析】(1)設(shè)CE=t,由于矩形OABC對折,OA=OC=4,從而可知OE=8﹣t,由勾股定理可解得:t的值,由易證CD=CE,從而可求出點(diǎn)D的坐標(biāo),利用待定系數(shù)法即可求出直線AD的解析式;(2)①由(1)可知:DE是AC的垂直平分線,從而可證明AC平分∠OAD,從而可證明⊙M與直線AD相切;②如果⊙M與y軸相切,可知圓心M到y(tǒng)軸的距離為半徑,由①可知M(8﹣2r,r)所以只需使8﹣2r=r,從而可求出r的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的直徑AB=12,弦AC=10,D是 的中點(diǎn),過點(diǎn)D作DE⊥AC,交AC的延長線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在RtABC中,∠C=90°,ADABC的角平分線,DEAB,垂足為點(diǎn)E,AE=BE.

(1)求∠B的度數(shù);

2)如果AC=3cm,CD=cm,求ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為地鐵調(diào)價后的計價表.調(diào)價后小明、小偉從家到學(xué)校乘地鐵分別需要4元和3元.由于刷卡坐地鐵有優(yōu)惠,因此他們平均每次實付3.6元和2.9元.已知小明從家到學(xué)校乘地鐵的里程比小偉從家到學(xué)校的里程多5 km,且小明每千米享受的優(yōu)惠金額是小偉的2,求小明和小偉從家到學(xué)校乘地鐵的里程分別是多少千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)填在相應(yīng)的大括號里(將各數(shù)用逗號分開):﹣4,0.62, ,18,0,﹣8.91,+100

正數(shù):{______…};負(fù)數(shù):{______…};整數(shù):{______…};分?jǐn)?shù):{______…}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值

1)(-1,其中x的值從不等式的正整數(shù)解中選。

÷a+2-),其中a2+3a-1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC=9,BAC=120°,AD是ABC的中線,AE是ABD的角平分線,DFAB交AE延長線于F,則DF的長為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是一張放在平面直角坐標(biāo)系中的長方形紙片,為原點(diǎn),點(diǎn)軸的正半軸上,點(diǎn)軸的正半軸上,,.在邊上取一點(diǎn),將紙片沿翻折,使點(diǎn)落在邊上的點(diǎn).

(1)求的長;

(2)求直線的表達(dá)式;

(3)直線平行,當(dāng)它與矩形有公共點(diǎn)時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)分別填入相應(yīng)的集合中.

,π,3.14,- ,0,-5.123 45…, ,-.

(1)有理數(shù)集合:{ …};

(2)無理數(shù)集合:{ …};

(3)正實數(shù)集合:{ …};

(4)負(fù)實數(shù)集合:{ …}.

查看答案和解析>>

同步練習(xí)冊答案