【題目】(1)如圖1,在△ABC中,∠DBC與∠ECB分別為△ABC的兩個(gè)外角,若∠A=60°,∠DBC+∠ECB多少度;
(2)如圖2,在△ABC中,BP、CP分別平分外角∠DBC、∠ECB,∠P與∠A有怎樣的數(shù)量關(guān)系?為什么?
(3)如圖3,在四邊形ABCD中,BP、CP分別平分外角∠EBC、∠FCB,∠P與∠A+∠D有怎樣的數(shù)量關(guān)系?為什么?
(4)如圖4,在五邊形ABCDE中,BP、CP分別平分外角∠NBC、∠MCB,∠P與∠A+∠D+∠E有怎樣的數(shù)量關(guān)系?(直接寫出答案).
【答案】(1)∠DBC+∠ECB=240°;(2)∠P=90°﹣∠A;(3)∠P=180°﹣(∠A+∠D)(4)∠P=270°﹣(∠A+∠E+∠D).
【解析】
(1)根據(jù)三角形內(nèi)角和定理求出∠ABC+∠ACB,根據(jù)外角的性質(zhì)計(jì)算;(2)根據(jù)角平分線的定義得到∠PBC=∠DBC,∠PCB=∠ECB,根據(jù)三角形內(nèi)角和定理計(jì)算;
(3)根據(jù)四邊形內(nèi)角和等于360°計(jì)算;(4)根據(jù)五邊形的內(nèi)角和等于540°、三角形的外角的性質(zhì)、角平分線的定義計(jì)算.
(1)∵∠A=60°,
∴∠ABC+∠ACB=180°﹣60°=120°,
∴∠DBC+∠ECB=360°﹣120°=240°;
(2)∵BP、CP分別平分外角∠DBC、∠ECB,
∴∠PBC=∠DBC,∠PCB=∠ECB,
∴∠ABC+∠ACB=180°﹣∠A,
∴∠DBC+∠ECB=360°﹣(180°﹣∠A)=180°+∠A,
∴∠PBC+∠PCB=90°+∠A,
∴∠P=180°﹣(∠PBC+∠PCB)=90°﹣∠A;
(3)∴∠ABC+∠ACB=360°﹣∠A﹣∠D,
∴∠DBC+∠ECB=360°﹣(360°﹣∠A﹣∠D)=∠A+∠D,
∴∠PBC+∠PCB=(∠A+∠D),
∴∠P=180°﹣(∠A+∠D);
(4)五邊形的內(nèi)角和=(5﹣2)×180°=540°,
∴∠ABC+∠ACB=540°﹣∠A﹣∠E﹣∠D,
∴∠DBC+∠ECB=360°﹣(540°﹣∠A﹣∠E﹣∠D)=∠A+∠E+∠D﹣180°,
∴∠PBC+∠PCB=(∠A+∠E+∠D﹣180°),
∠P=180°﹣(∠A+∠E+∠D﹣180°)=270°﹣(∠A+∠E+∠D).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,以平行四邊形ABCD的頂點(diǎn)A為圓心,AB為半徑作圓,分別交BC,AD于E,F(xiàn)兩點(diǎn),交BA的延長(zhǎng)于G,判斷弧EF和弧FG是否相等,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求二次函數(shù)y=x2﹣4x+3的頂點(diǎn)坐標(biāo)及對(duì)稱軸,并在所給坐標(biāo)系中畫出該二次函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=6cm,AC=12cm,動(dòng)點(diǎn)D以1cm/s 的速度從點(diǎn)A出發(fā)到點(diǎn)B止,動(dòng)點(diǎn)E以2cm/s 的速度從點(diǎn)C出發(fā)到點(diǎn)A止,且兩點(diǎn)同時(shí)運(yùn)動(dòng),當(dāng)以點(diǎn)A、D、E為頂點(diǎn)的三角形與△ABC相似時(shí),求運(yùn)動(dòng)的時(shí)間t.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在方格紙中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,△ABC的頂點(diǎn)都在格點(diǎn)上.
(1)畫出△ABC先向右平移6格,再向上平移1格所得的△A′B′C′;
(2)畫出△ABC的AB邊上的中線CD和高線CE;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要舉辦國(guó)慶聯(lián)歡會(huì),主持人站在舞臺(tái)的黃金分割點(diǎn)處最自然得體.如圖,若舞臺(tái)AB的長(zhǎng)為20m,C為AB的一個(gè)黃金分割點(diǎn)(AC<BC),則AC的長(zhǎng)為(結(jié)果精確到0.1m)( )
A.6.7m
B.7.6m
C.10m
D.12.4m
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A在y軸上,點(diǎn)B在x軸上,∠ABO=60°,若點(diǎn)D(1,0)且BD=2OD.把△ABO繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m°(0<m<180)后,點(diǎn)B恰好落在初始Rt△ABO的邊上,此時(shí)的點(diǎn)B記為B′,則點(diǎn)B′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=DB,∠1=∠2,請(qǐng)問添加下面哪個(gè)條件不能判斷△ABC≌△DBE的是( 。
A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com