【題目】為了節(jié)約水資源,某市準備按照居民家庭年用水量實行階梯水價,水價分檔遞增,計劃使第一檔、第二檔和第三檔的水價分別覆蓋全市居民家庭的80%,15%和5%.為合理確定各檔之間的界限,隨機抽查了該市5萬戶居民家庭上一年的年用水量(單位:m3),繪制了統(tǒng)計圖,如圖所示.下面有四個推斷:
①年用水量不超過180m3的該市居民家庭按第一檔水價交費;
②年用水量不超過240m3的該市居民家庭按第三檔水價交費;
③該市居民家庭年用水量的中位數(shù)在150~180m3之間;
④該市居民家庭年用水量的眾數(shù)約為110m3.
其中合理的是( )
A. ①③ B. ①④ C. ②③ D. ②④
【答案】B
【解析】
利用條形統(tǒng)計圖結(jié)合中位數(shù)和中位數(shù)的定義分別分析得出答案.
①由條形統(tǒng)計圖可得:年用水量不超過180m3的該市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(萬),
×100%=80%,故年用水量不超過180m3的該市居民家庭按第一檔水價交費,正確;
②∵年用水量超過240m3的該市居民家庭有(0.15+0.15+0.05)=0.35(萬),
∴×100%=7%≠5%,故年用水量超過240m3的該市居民家庭按第三檔水價交費,故此選項錯誤;
③∵5萬個數(shù)據(jù)的中間是第25000和25001的平均數(shù),
∴該市居民家庭年用水量的中位數(shù)在120-150之間,故此選項錯誤;
④該市居民家庭年用水量為110m3有1.5萬戶,戶數(shù)最多,該市居民家庭年用水量的眾數(shù)約為110m3,因此正確,
故選B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】通過對《勾股定理》的學(xué)習(xí),我們知道:如果一個三角形中,兩邊的平方和等于第三邊的平方,那么這個三角形一定是直角三角形.如果我們新定義一種三角形——兩邊的平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
(1)根據(jù)奇異三角形的定義,請你判斷:等邊三角形一定是奇異三角形嗎?
(填“是”或不是);
(2)若某三角形的三邊長分別為1、、2,則該三角形是不是奇異三角形,請做出判斷并寫出判斷依據(jù);
(3)在中,兩邊長分別為,且且,則這個三角形是不是奇異三角形?請做出判斷并寫出判斷依據(jù);
探究:Rt中,,且b>a,若Rt是奇異三角形,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程k2x2﹣2(k+1)x+1=0有兩個實數(shù)根.
(1)求k的取值范圍;
(2)當(dāng)k=1時,設(shè)所給方程的兩個根分別為x1和x2,求(x1﹣2)(x2﹣2)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,已知,的垂直平分線交于點,交于點,連接.
(1)若,則的度數(shù)是 ;
(2)若,的周長是.
①求的長度;
②若點為直線上一點,請你直接寫出周長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=5,AD=12,點E是BC上一點,將△ABE沿AE折疊,使點B落在點F處,連接CF,當(dāng)△CEF為直角三角形時,CF的長為________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點B坐標為(-3,0),點A是y軸正半軸上一點,且AB=5,點P是x軸上位于點B右側(cè)的一個動點,設(shè)點P的坐標為(m,0)
(1)點A的坐標為( )
(2)當(dāng)△ABP是等腰三角形時,求P點的坐標;
(3)如圖2,過點P作PE⊥AB交線段AB于點E,連接OE.若點A關(guān)于直線OE的對稱點為A',當(dāng)點A'恰好落在直線PE上時,BE=________(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,.點為邊上一點(不與點重合),點為邊上一點,線段、相交于點,其中.
求證:;
若,求的長及四邊形的面積;
連接,若是以為腰的等腰三角形,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,B(2m,0),C(3m,0)是平面直角坐標系中兩點,其中m為常數(shù),且m>0,E(0,n)為y軸上一動點,以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點C逆時針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線()過E,A′兩點.
(1)填空:∠AOB= °,用m表示點A′的坐標:A′( , );
(2)當(dāng)拋物線的頂點為A′,拋物線與線段AB交于點P,且時,△D′OE與△ABC是否相似?說明理由;
(3)若E與原點O重合,拋物線與射線OA的另一個交點為點M,過M作MN⊥y軸,垂足為N:
①求a,b,m滿足的關(guān)系式;
②當(dāng)m為定值,拋物線與四邊形ABCD有公共點,線段MN的最大值為10,請你探究a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com