【題目】為了了解八年級(jí)學(xué)生參加社會(huì)實(shí)踐活動(dòng)情況,某區(qū)教育部門隨機(jī)調(diào)查了本區(qū)部分八年級(jí)學(xué)生第一學(xué)期參加社會(huì)實(shí)踐活動(dòng)的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計(jì)圖①和圖②,請(qǐng)根據(jù)圖中提供的信息,回答下列問(wèn)題:

I)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為_______________,圖①中的m的為______________

(Ⅱ)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

(Ⅲ)若該區(qū)八年級(jí)學(xué)生有300人,估計(jì)參加社會(huì)實(shí)踐活動(dòng)時(shí)間大于7天的學(xué)生人數(shù)。

【答案】I80,20;(Ⅱ)眾數(shù)為5,中位數(shù)為6,平均數(shù)是6.4;(Ⅲ)該區(qū)3000名八年級(jí)學(xué)生中參加社會(huì)實(shí)踐活動(dòng)的時(shí)間大于7天的人數(shù)約為600

【解析】

(1)由參加7天社會(huì)實(shí)踐的人數(shù)除以其占的比例可得到總?cè)藬?shù);16除以總?cè)藬?shù)即可求m;

(2) 平均數(shù)=,出現(xiàn)次數(shù)最多的數(shù)據(jù)為眾數(shù),將數(shù)據(jù)從小到大排列最中間的就是中位數(shù);

(3)總?cè)藬?shù)乘以7天占的比例即可求解.

I20÷25%=80

,則m=20;

(Ⅱ)∵在這組樣本數(shù)據(jù)中,5出現(xiàn)了28次,出現(xiàn)的次數(shù)最多,

∴這組樣本數(shù)據(jù)的眾數(shù)為5

∵將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處于中間的兩個(gè)數(shù)都是6,有,

∴這組樣本數(shù)據(jù)的中位數(shù)為6

觀察條形統(tǒng)計(jì)圖,

∴這組數(shù)據(jù)的平均數(shù)是6.4

(Ⅲ)∵在80名學(xué)生中,參加社會(huì)實(shí)踐活動(dòng)的時(shí)間大于7天的人數(shù)比例為,

∴由樣本數(shù)據(jù),估計(jì)該區(qū)3000名八年級(jí)學(xué)生中參加社會(huì)實(shí)踐活動(dòng)的時(shí)間大于7天的人數(shù)比例約為,于是,有

∴該區(qū)3000名八年級(jí)學(xué)生中參加社會(huì)實(shí)踐活動(dòng)的時(shí)間大于7天的人數(shù)約為600

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某初級(jí)中學(xué)數(shù)學(xué)興趣小組為了了解本校學(xué)生的年齡情況,隨機(jī)調(diào)查了該校部分學(xué)生的年齡,整理數(shù)據(jù)并繪制如下不完整的統(tǒng)計(jì)圖.

依據(jù)以上信息解答以下問(wèn)題:

(1)求樣本容量;

(2)直接寫出樣本容量的平均數(shù),眾數(shù)和中位數(shù);

(3)若該校一共有1800名學(xué)生,估計(jì)該校年齡在15歲及以上的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組請(qǐng)結(jié)合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得____________________;

(Ⅱ)解不等式②,得_______________________;

III)把不等式①和②的解集在數(shù)軸上表示出來(lái):

IV)原不等式組的解集為________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB3,BC4,點(diǎn)EAB邊上一點(diǎn),且AE2,點(diǎn)F是邊BC上的任意一點(diǎn),把△BEF沿EF翻折,點(diǎn)B的對(duì)應(yīng)點(diǎn)為G,連接AG,CG,則四邊形AGCD的面積的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,點(diǎn)OBC邊上,∠BAC的平分線交⊙O于點(diǎn)D,連接BD、CD,過(guò)點(diǎn)DBC的平行線與AC的延長(zhǎng)線相交于點(diǎn)P.

(1)求證:PD是⊙O的切線;

(2)求證:△ABD∽△DCP;

(3)當(dāng)AB=5cm,AC=12cm時(shí),求線段PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列幾何體是由4個(gè)相同的小正方體搭成的,其中主視圖和左視圖相同的是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線l : y kx b k 0 與曲線有 n 個(gè)交點(diǎn),則稱直線l 為曲線的n 階共生直線,交點(diǎn)稱為它們的共生點(diǎn)”.

1)若直線 y kx b k 0與某曲線的一個(gè)共生點(diǎn) P m, 2m 1,試判斷此共生點(diǎn)不可能位于第幾象限,請(qǐng)說(shuō)明理由.

2)若直線 l : y kx 2k k 0 x y 軸分別交于 A 、 B 兩點(diǎn),且直線 l 為反比例函數(shù)y=“ 2階共生直線,且共生點(diǎn)CD,求k的取值范圍,試證明此時(shí)不論 k 取何值,總有 AC BD 成立.

3)若直線l : y kx 2k k 0 x 軸交于點(diǎn) A ,且直線l 為拋物線 y x2 2x 1“2 階共生直線,且共生點(diǎn) P Q xP xQ ,若 AQ 3AP ,求 k 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為改善辦學(xué)條件,計(jì)劃購(gòu)進(jìn)兩種規(guī)格的書架,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn)有線下和線上兩種方式,具有情況如下表:

規(guī)格

線下

線上

單價(jià)(元/個(gè))

運(yùn)費(fèi)(元/個(gè))

單價(jià)(元/個(gè))

運(yùn)費(fèi)(元/個(gè))

A

240

0

210

20

B

300

0

250

30

(Ⅰ)如果在線下購(gòu)買兩種書架20個(gè),共花費(fèi)5520元,求兩種書架各購(gòu)買了多少個(gè);

(Ⅱ)如果在線上購(gòu)買兩種書架20個(gè),共花費(fèi)元,設(shè)其中種書架購(gòu)買個(gè),求W關(guān)于的函數(shù)關(guān)系式;

(Ⅲ)在(Ⅱ)的條件下,若購(gòu)買種書架的數(shù)量不少于種書架的2倍,請(qǐng)求出花費(fèi)最少的購(gòu)買方案,并計(jì)算按照該購(gòu)買方案線上比線下節(jié)約多少錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖ABC,AB=AC,點(diǎn)E是線段BC延長(zhǎng)線上一點(diǎn),EDAB,垂足為D,ED交線段AC于點(diǎn)F,點(diǎn)O在線段EFO經(jīng)過(guò)C、E兩點(diǎn),ED于點(diǎn)G.

(1)求證:AC是⊙O的切線;

(2)若∠E=30°,AD=1,BD=5,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案