【題目】如圖,∠MON=30°,點(diǎn)A1、A2、A3…在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A7B7A8的邊長(zhǎng)為( 。
A. 64B. 32C. 16D. 8
【答案】A
【解析】
根據(jù)等邊三角形的性質(zhì)以及平行線的判定得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16…進(jìn)而得出答案.
解:如圖:
∵△A1B1A2是等邊三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°120°30°=30°,
又∵∠3=60°,
∴∠5=180°60°30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等邊三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此類(lèi)推:A7B7=64B1A2=64.
故選:A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=10cm,點(diǎn)P從點(diǎn)B出發(fā),沿BA方向以每秒cm的速度向終點(diǎn)A運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)沿CB方向以每秒1 cm的速度向終點(diǎn)B運(yùn)動(dòng),將△BPQ沿BC翻折,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′,設(shè)Q點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)四邊形QPBP′為菱形時(shí),t的值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,一次函數(shù)y=(1-3k)x+2k-1,試回答:
(1)k為何值時(shí),y隨x的增大而減?
(2)k為何值時(shí),圖像與y軸交點(diǎn)在x軸上方?
(3) 若一次函數(shù)y=(1-3k)x+2k-1經(jīng)過(guò)點(diǎn)(3,4).請(qǐng)求出一次函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】城區(qū)某新建住宅小區(qū)計(jì)劃購(gòu)買(mǎi)并種植甲、乙兩種樹(shù)苗共300株.已知甲種樹(shù)苗每株60元,乙種樹(shù)苗每株90元.
(1)若購(gòu)買(mǎi)樹(shù)苗共用21000元,問(wèn)甲、乙兩種樹(shù)苗應(yīng)各買(mǎi)多少株?
(2)據(jù)統(tǒng)計(jì),甲、乙兩種樹(shù)苗每株樹(shù)苗對(duì)空氣的凈化指數(shù)分別為和,問(wèn)如何購(gòu)買(mǎi)甲、乙兩種樹(shù)苗才能保證該小區(qū)的空氣凈化指數(shù)之和等于90?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解下列方程
(1)2x2-4x-10=0 (用配方法)
(2)2x2+3x=4(公式法)
(3)(x-2)2=2(x-2)
(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形。類(lèi)似地,我們定義:至少有一組對(duì)邊相等的四邊形叫做等對(duì)邊四邊形.
(1)請(qǐng)你寫(xiě)出一個(gè)等對(duì)邊四邊形的名稱(chēng);
(2)如圖,在△ABC中,點(diǎn)D、E分別在AB、AC上,設(shè)CD、BE相交于點(diǎn)O,若∠A=50°,.請(qǐng)寫(xiě)出圖中其余等于50°的角,并猜想圖中哪個(gè)四邊形為等對(duì)邊四邊形(不需證明);
(3)在中,如果∠A是不等于50°的銳角,點(diǎn)D、E分別在AB、AC上,且.探究:滿足上述條件的圖形中是否存在等對(duì)邊四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校開(kāi)展“書(shū)香校園”活動(dòng)以來(lái),受到同學(xué)們的廣泛關(guān)注,學(xué)校為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書(shū)的次數(shù),并制成如圖不完整的統(tǒng)計(jì)表.學(xué)生借閱圖書(shū)的次數(shù)統(tǒng)計(jì)表
借閱圖書(shū)的次數(shù) | 0次 | 1次 | 2次 | 3次 | 4次及以上 |
人數(shù) | 7 | 13 | a | 10 | 3 |
請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問(wèn)題:
______,______.
該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是______,眾數(shù)是______.
請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“3次”所對(duì)應(yīng)扇形的圓心角的度數(shù);
若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書(shū)“4次及以上”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線y=x2+2x﹣3與x軸相交于A,B兩點(diǎn),與y軸交于點(diǎn)C,D為頂點(diǎn).
(1)求直線AC的解析式和頂點(diǎn)D的坐標(biāo);
(2)已知E(0, ),點(diǎn)P是直線AC下方的拋物線上一動(dòng)點(diǎn),作PR⊥AC于點(diǎn)R,當(dāng)PR最大時(shí),有一條長(zhǎng)為的線段MN(點(diǎn)M在點(diǎn)N的左側(cè))在直線BE上移動(dòng),首尾順次連接A、M、N、P構(gòu)成四邊形AMNP,請(qǐng)求出四邊形AMNP的周長(zhǎng)最小時(shí)點(diǎn)N的坐標(biāo);
(3)如圖2,過(guò)點(diǎn)D作DF∥y軸交直線AC于點(diǎn)F,連接AD,Q點(diǎn)是線段AD上一動(dòng)點(diǎn),將△DFQ沿直線FQ折疊至△D1FQ,是否存在點(diǎn)Q使得△D1FQ與△AFQ重疊部分的圖形是直角三角形?若存在,請(qǐng)求出AQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABD、△CBD關(guān)于直線BD對(duì)稱(chēng),點(diǎn)E是BC上一點(diǎn),線段CE的垂直平分線交BD于點(diǎn)F,連接AF、EF.
(1) 求證:AF=EF;
(2) 如圖2,連接AE交BD于點(diǎn)G.若EF∥CD,求證:;
(3) 如圖3,若∠BAD=90°,且點(diǎn)E在BF的垂直平分線上,tan∠ABD=,DF=,請(qǐng)直接寫(xiě)出AF的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com