【題目】如圖,∠MON=30°,點(diǎn)A1A2A3在射線ON上,點(diǎn)B1、B2、B3在射線OM上,A1B1A2、A2B2A3、A3B3A4均為等邊三角形,若OA1=1,則A7B7A8的邊長(zhǎng)為( 。

A. 64B. 32C. 16D. 8

【答案】A

【解析】

根據(jù)等邊三角形的性質(zhì)以及平行線的判定得出A1B1A2B2A3B3,以及A2B22B1A2,得出A3B34B1A24,A4B48B1A28,A5B516B1A216…進(jìn)而得出答案.

解:如圖:

∵△A1B1A2是等邊三角形,

A1B1A2B1,∠3=∠4=∠1260°

∴∠2120°,

∵∠MON30°

∴∠1180°120°30°30°,

又∵∠360°,

∴∠5180°60°30°90°,

∵∠MON=∠130°,

OA1A1B11,

A2B11

∵△A2B2A3、A3B3A4是等邊三角形,

∴∠11=∠1060°,∠1360°

∵∠4=∠1260°,

A1B1A2B2A3B3B1A2B2A3,

∴∠1=∠6=∠730°,∠5=∠890°,

A2B22B1A2B3A32B2A3,

A3B34B1A24,

A4B48B1A28

A5B516B1A216,

以此類(lèi)推:A7B764B1A264

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,ACBC10cm,點(diǎn)P從點(diǎn)B出發(fā),沿BA方向以每秒cm的速度向終點(diǎn)A運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā)沿CB方向以每秒1 cm的速度向終點(diǎn)B運(yùn)動(dòng),將BPQ沿BC翻折,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′,設(shè)Q點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)四邊形QPBP′為菱形時(shí),t的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,一次函數(shù)y=(1-3kx+2k-1,試回答:

1k為何值時(shí),yx的增大而減?

2k為何值時(shí),圖像與y軸交點(diǎn)在x軸上方?

3) 若一次函數(shù)y=(1-3kx+2k-1經(jīng)過(guò)點(diǎn)(3,4).請(qǐng)求出一次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】城區(qū)某新建住宅小區(qū)計(jì)劃購(gòu)買(mǎi)并種植甲、乙兩種樹(shù)苗共300株.已知甲種樹(shù)苗每株60元,乙種樹(shù)苗每株90元.

1)若購(gòu)買(mǎi)樹(shù)苗共用21000元,問(wèn)甲、乙兩種樹(shù)苗應(yīng)各買(mǎi)多少株?

2)據(jù)統(tǒng)計(jì),甲、乙兩種樹(shù)苗每株樹(shù)苗對(duì)空氣的凈化指數(shù)分別為,問(wèn)如何購(gòu)買(mǎi)甲、乙兩種樹(shù)苗才能保證該小區(qū)的空氣凈化指數(shù)之和等于90?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程

(1)2x2-4x-10=0 (用配方法)

(2)2x2+3x=4(公式法)

(3)(x-2)2=2(x-2)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:有兩條邊相等的三角形叫做等腰三角形。類(lèi)似地,我們定義:至少有一組對(duì)邊相等的四邊形叫做等對(duì)邊四邊形.

1)請(qǐng)你寫(xiě)出一個(gè)等對(duì)邊四邊形的名稱(chēng);

2)如圖,在ABC中,點(diǎn)D、E分別在AB、AC上,設(shè)CD、BE相交于點(diǎn)O,若∠A=50°,.請(qǐng)寫(xiě)出圖中其余等于50°的角,并猜想圖中哪個(gè)四邊形為等對(duì)邊四邊形(不需證明);

3)在中,如果∠A是不等于50°的銳角,點(diǎn)D、E分別在ABAC上,且.探究:滿足上述條件的圖形中是否存在等對(duì)邊四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校開(kāi)展書(shū)香校園活動(dòng)以來(lái),受到同學(xué)們的廣泛關(guān)注,學(xué)校為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書(shū)的次數(shù),并制成如圖不完整的統(tǒng)計(jì)表.學(xué)生借閱圖書(shū)的次數(shù)統(tǒng)計(jì)表

借閱圖書(shū)的次數(shù)

0

1

2

3

4次及以上

人數(shù)

7

13

a

10

3

請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問(wèn)題:

______,______.

該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是______,眾數(shù)是______.

請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“3所對(duì)應(yīng)扇形的圓心角的度數(shù);

若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書(shū)“4次及以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知拋物線y=x2+2x﹣3x軸相交于AB兩點(diǎn),與y軸交于點(diǎn)C,D為頂點(diǎn).

1)求直線AC的解析式和頂點(diǎn)D的坐標(biāo);

2)已知E0, ),點(diǎn)P是直線AC下方的拋物線上一動(dòng)點(diǎn),作PRAC于點(diǎn)R,當(dāng)PR最大時(shí),有一條長(zhǎng)為的線段MN(點(diǎn)M在點(diǎn)N的左側(cè))在直線BE上移動(dòng),首尾順次連接AM、N、P構(gòu)成四邊形AMNP,請(qǐng)求出四邊形AMNP的周長(zhǎng)最小時(shí)點(diǎn)N的坐標(biāo);

3)如圖2,過(guò)點(diǎn)DDFy軸交直線AC于點(diǎn)F,連接ADQ點(diǎn)是線段AD上一動(dòng)點(diǎn),將DFQ沿直線FQ折疊至D1FQ,是否存在點(diǎn)Q使得D1FQAFQ重疊部分的圖形是直角三角形?若存在,請(qǐng)求出AQ的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABD、CBD關(guān)于直線BD對(duì)稱(chēng),點(diǎn)EBC上一點(diǎn),線段CE的垂直平分線交BD于點(diǎn)F,連接AF、EF

1求證:AFEF

2如圖2,連接AEBD于點(diǎn)G.若EFCD,求證:

3如圖3,若∠BAD90°,且點(diǎn)EBF的垂直平分線上,tanABD,DF,請(qǐng)直接寫(xiě)出AF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案