【題目】如圖所示,ABBE于點(diǎn)B,DEBE于點(diǎn)E.

(1)若∠A=D,AB=DE,則ABCDEF全等的理由是____;

(2)若∠A=D,BC=EF,則ABCDEF全等的理由是_________;

(3)AB=DE,BC=EF,則ABCDEF全等的理由是_______;

(4)AB=DE,AC=DF,則ABCDEF全等的理由是_________.

【答案】ASAAASSASHL

【解析】

(1)在△ABC和△DEF中,因?yàn)椤?/span>B=∠E=90°, AB=DE,∠A=∠D,所以利用ASA即可判定△ABC≌△DEF;(2)在△ABC和△DEF中,因?yàn)椤?/span>B=∠E=90°,∠A=∠D,BC=EF,所以利用AAS即可判定△ABC≌△DEF;(3)在△ABC和△DEF中,因?yàn)?/span>AB=DE,∠B=∠E=90°,BC=EF,所以利用SAS即可判定△ABC≌△DEF;(4)Rt△ABCRt△DEF中,因?yàn)?/span>AC=DF,AB=DE,所以利用HL即可判定 Rt△ABC≌Rt△DEF.

(1)在△ABC和△DEF中,因?yàn)椤?/span>B=∠E=90°,

AB=DE,∠A=∠D,所以△ABC≌△DEF(ASA);

(2)在△ABC和△DEF中,因?yàn)椤?/span>B=∠E=90°,

∠A=∠D,BC=EF,所以△ABC≌△DEF(AAS);

(3)在△ABC和△DEF中,因?yàn)?/span>AB=DE,∠B=∠E=90°,

BC=EF,所以△ABC≌△DEF(SAS);

(4)Rt△ABCRt△DEF中,因?yàn)?/span>AC=DF,AB=DE,

所以Rt△ABC≌Rt△DEF(HL).

故答案為:ASA;AAS;SASHL.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)①畫(huà)出△ABC關(guān)于y軸對(duì)稱的△A1B1C1
②畫(huà)出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2;

(2)求△A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市在城市建設(shè)中,要折除舊煙囪AB(如圖所示),在煙囪正西方向的樓CD的頂端C,測(cè)得煙囪的頂端A的仰角為45°,底端B的俯角為30°,已量得DB=21m.

(1)在原圖上畫(huà)出點(diǎn)C望點(diǎn)A的仰角和點(diǎn)C望點(diǎn)B的俯角,并分別標(biāo)出仰角和俯角的大;

(2)拆除時(shí)若讓煙囪向正東倒下,試問(wèn):距離煙囪正東35m遠(yuǎn)的一棵大樹(shù)是否被歪倒的煙囪砸著?請(qǐng)說(shuō)明理由.(1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)三角形中一個(gè)內(nèi)角是另一個(gè)內(nèi)角的3倍時(shí),我們稱此三角形為“夢(mèng)想三角形”.如果一個(gè)“夢(mèng)想三角形”有一個(gè)角為108°,那么這個(gè)“夢(mèng)想三角形”的最小內(nèi)角的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了促進(jìn)節(jié)能減排,倡導(dǎo)節(jié)約用電,某市將實(shí)行居民生活用電階梯電價(jià)方案,圖中折線反映了每戶每月用電電費(fèi)y(元)與用電量x(度)間的函數(shù)關(guān)系式.

1)根據(jù)圖象,階梯電價(jià)方案分為三個(gè)檔次,填寫(xiě)下表:

檔次

第一檔

第二檔

第三檔

每月用電量x(度)

0x≤140



2)小明家某月用電120度,需交電費(fèi)

3)求第二檔每月電費(fèi)y(元)與用電量x(度)之間的函數(shù)關(guān)系式;

4)在每月用電量超過(guò)230度時(shí),每多用1度電要比第二檔多付電費(fèi)m元,小剛家某月用電290度,交電費(fèi)153元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,延長(zhǎng)CB至M,使BM=2,連接AM,BN⊥AM于N,O是AC、BD的交點(diǎn),連接ON,則ON的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,

求證:∠A+C=180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程2x2﹣(4k+2)x+2k2+1=0.
(1)當(dāng)k取何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?
(2)當(dāng)k取何值時(shí),方程有兩個(gè)相等的實(shí)數(shù)根?
(3)當(dāng)k取何值時(shí),方程沒(méi)有實(shí)數(shù)根?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于(x1 , 0),(x2 , 0)兩點(diǎn),且0<x1<1,1<x2<2,與y軸交于(0,﹣2).下列結(jié)論:①2a+b>1; ②a+b>2;③a﹣b<2;④3a+b>0; ⑤a<﹣1.其中正確結(jié)論的個(gè)數(shù)為(
A.2
B.3
C.4
D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案