【題目】如圖,在RtABC中,∠C30°,AB4,D,F分別是ACBC的中點,等腰直角三角形DEH的邊DE經(jīng)過點FEHBC于點G,且DF2EF,則CG的長為( 。

A. 2B. 21C. D. +1

【答案】B

【解析】

由已知得出DFAB,BC=AB=4DF=AB=2,CF=BFCF=BC=2,求出EF=1,求出EGF是等腰直角三角形,得出GF=EF=1,即可得出CG=CF-GF=2-1

RtABC中,∠C30°,AB4,DF分別是AC,BC的中點,

DFAB,BCAB4,DFAB2,CFBF,

CFBC2,

DF2EF,

EF1,

∵等腰直角三角形DEH的邊DE經(jīng)過點F,

DEBC

∴△EGF是等腰直角三角形,

GFEF1

CGCFGF21,

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)今“微信運動”被越來越多的人關注和喜愛,某興趣小組隨機調查了我市50名教師某日“微信運動”中的步數(shù)情況進行統(tǒng)計整理,繪制了如下的統(tǒng)計圖表(不完整):

步數(shù)

頻數(shù)

頻率

0≤x<4000

8

a

4000≤x<8000

15

0.3

8000≤x<12000

12

b

12000≤x<16000

c

0.2

16000≤x<20000

3

0.06

20000≤x<24000

d

0.04

請根據(jù)以上信息,解答下列問題:

(1)寫出a,b,c,d的值并補全頻數(shù)分布直方圖;

(2)本市約有37800名教師,用調查的樣本數(shù)據(jù)估計日行走步數(shù)超過12000步(包含12000步)的教師有多少名?

(3)若在50名被調查的教師中,選取日行走步數(shù)超過16000步(包含16000步的兩名教師與大家分享心得,求被選取的兩名教師恰好都在20000步(包含20000步)以上的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,D,E是半圓上任意兩點,連結AD,DE,AEBD相交于點C,要使ADCABD相似,可以添加一個條件.下列添加的條件其中錯誤的是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學興趣小組用高為1.2米的測角儀測量小樹AB的高度,如圖,在距AB一定距離的F處測得小樹頂部A的仰角為50°,沿BF方向行走3.5米到G處時,又測得小樹頂部A的仰角為27°,求小樹AB的高度.(參考數(shù)據(jù):sin27°=0.45,cos27°=0.89,tan27°=0.5sin50°=0.77,cos50°=0.64tan50°=1.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線y=x2-bx+5x軸交于A,B兩點,與y軸交于點C,已知點A的坐標是(1,0),點A在點B的左邊.

1)求拋物線的函數(shù)解析式;

2)如圖1,點EBC的中點,將BOC沿CE方向進行平移,平移后得到的三角形為HGF,當點F與點E重合時停止運動.設平移的距離CF=m,記HGF在直線ly=x-3下方的圖形面積為S,求S關于m的函數(shù)解析式;

3)如圖2,連結ACBC,點M,E分別是AC, BC的中點.P是線段ME上任一點,點Q是線段AB上任一點.現(xiàn)進行如下兩步操作:

第一步:沿三角形CAB的中位線ME將紙片剪成兩部分,并在線段ME上任意取一點P,線段AB上任意取一點Q,沿PQ將四邊形紙片MABE剪成兩部分;

第二步:將PQ左側紙片繞M點按順時針方向旋轉180°,使線段MAMC重合,將PQ右側紙片繞E點按逆時針方向旋轉180°,使線段ECEB重合,拼成一個與三角形紙片ABC面積相等的四邊形紙片.(注:裁剪和拼圖過程均無縫且不重疊)

求拼成的這個四邊形紙片的周長的最小值與最大值的和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點EEFABPQF,連接BF.

(1)求證:四邊形BFEP為菱形;

(2)當點EAD邊上移動時,折痕的端點P、Q也隨之移動;

①當點Q與點C重合時(如圖2),求菱形BFEP的邊長;

②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax12+ka0)經(jīng)過點(﹣1,0),頂點為M,過點P0a+4)作x軸的平行線1,l與拋物線及其對稱軸分別交于點AB,H.以下結論:①當x3.1時,y0;②存在點P,使APPH;③(BPAP)是定值;④設點M關于x軸的對稱點為M',當a2時,點M′在l下方,其中正確的是(  )

A. ①③B. ②③C. ②④D. ①④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為促進課堂教學,提高教學質量,對九年級學生進行了一次你最喜歡的課堂教學方式的問卷調查.根據(jù)收回的問卷,學校繪制了如下圖表,請你根據(jù)圖表中提供的信息,解答下列問題.

(1)請把三個圖表中的空缺部分都補充完整;

(2)你最喜歡以上哪一種教學方式或另外的教學方式,請?zhí)岢瞿愕慕ㄗh,并簡要說明理由(字數(shù)在20字以內)

編號

教學方式

最喜歡的頻數(shù)

頻率

1

教師講,學生聽

20

0.10

2

教師提出問題,學生探索思考

0.5

3

學生自行閱讀教材,獨立思考

30

4

分組討論,解決問題

0.25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019319日,河南省教育廳發(fā)布《關于推進中小學生研學旅行的實施方案》,某中學為落實方案,給學生提供了以下五種主題式研學線路:A紅色河南B厚重河南C出彩河南,D生態(tài)河南,E老家河南為了解學生最喜歡哪一種研學線路(每人只選取一種),隨機抽取了部分學生進行調查,將調查結果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖.根據(jù)以上信息解答下列問題:

調查結果統(tǒng)計表

主題

人數(shù)/

百分比

A

75

n%

B

m

30%

C

45

15%

D

60

E

30

1)本次接受調查的總人數(shù)為   人,統(tǒng)計表中m   ,n   

2)補全條形統(tǒng)計圖.

3)若把條形統(tǒng)計圖改為扇形統(tǒng)計圖,則生態(tài)河南主題線路所在扇形的圓心角度是   

4)若該實驗中學共有學生3000人,請據(jù)此估計該校最喜歡老家河南主題線路的學生有多少人.

查看答案和解析>>

同步練習冊答案