【題目】如圖,AC是矩形ABCD的對角線,⊙O是△ABC的內(nèi)切圓,點E是邊AD上一點,連結CE,將△CDE繞點C旋轉,當CD落到對角線AC上時,點E恰與圓心O重合,已知AE=6,則下列結論不正確的是( 。
A. BC+DE=ACB. ⊙O 的半徑是2
C. ∠ACB=2∠DCED. AE=CE
【答案】D
【解析】
⊙O是△ABC的內(nèi)切圓,設半徑為r,切點分別為F、G、H,連接OG、OH,則四邊形BGOH是正方形,得出OG=OG=BG=BH=r,由旋轉的性質(zhì)得:OF=DE=r,CF=CD,∠FCO=∠DCE,得出∠ACB=2∠DCE,在Rt△ABC中,由勾股定理得出方程,解方程得出r=2,BC=8,AC=10,選項A、B、C正確;由勾股定理得:CE=,選項D不正確.
解:⊙O是△ABC的內(nèi)切圓,設半徑為r,切點分別為F、G、H,連接OG、OH,如圖:
則四邊形BGOH是正方形,
∴OG=OG=BG=BH=r,
由旋轉的性質(zhì)得:OF=DE=r,CF=CD,∠FCO=∠DCE,
∴∠ACB=2∠DCE,
∵BC=AD,
∴AB=CD=CF=AE=6,
由切線長定理得:CH=CF=CD=6,∠ACO=∠BCO,AF=AG=6﹣r,
∴AC=AF+CF=12﹣r,
在Rt△ABC中,由勾股定理得:62+(6+r)2=(12﹣r)2,
解得:r=2,∴BC=8,AC=10,
∴BC+DE=AC,⊙O 的半徑是2,
所以選項A、B、C正確;
由勾股定理得:,選項D不正確;
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的周長為22m,對角線AC、BD交于點O,過點O與AC垂直的直線交邊AD于點E,則△CDE的周長為( )
A. 8cmB. 9cmC. 10cmD. 11cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于A(2,-1)、B(,n)兩點,點C的坐標為(0,2),過點C的直線l與x軸平行.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,等邊△AOB的邊長為10,點C在邊OA上,點D在邊AB上,且OC=3BD.反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過C、D兩點,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1)是一款手機支架,忽略支管的粗細,得到它的簡化結構圖如圖(2)所示.已知支架底部支架CD平行于水平面,EF⊥OE,GF⊥EF,支架可繞點O旋轉,OE=20cm,EF=20cm.如圖(3)若將支架上部繞O點逆時針旋轉,當點G落在直線CD上時,測量得∠EOG=65°.
(1)求FG的長度(結果精確到0.1);
(2)將支架由圖(3)轉到圖(4)的位置,若此時F、O兩點所在的直線恰好于CD垂直,點F的運動路線的長度稱為點F的路徑長,求點F的路徑長.
(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,函數(shù)y=(x>0)的圖象G經(jīng)過點A(4,1),直線l:y=+b與圖象G交于點B,與y軸交于點C.
(1)求k的值;
(2)橫、縱坐標都是整數(shù)的點叫做整點.記圖象G在點A,B之間的部分與線段OA,OC,BC圍成的區(qū)域(不含邊界)為w.
①當b=﹣1時,直接寫出區(qū)域W內(nèi)的整點個數(shù);
②若區(qū)域W內(nèi)恰有4個整點,結合函數(shù)圖象,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)在拋物線的對稱軸上,是否存在點P,使PA+PC的值最。咳绻嬖,請求出點P的坐標,如果不存在,請說明理由;(3)設點M在拋物線的對稱軸上,當△MAC是直角三角形時,求點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù) y=的圖象如圖所示,則二次函數(shù) y =ax 2-2x和一次函數(shù) y=bx+a 在同一平面直角坐標系中的圖象可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若一次函數(shù)y=ax+b和反比例函數(shù)y=-滿足a+c=2b,則稱為y=ax2+bx+c為一次函數(shù)和反比例函數(shù)的“等差”函數(shù).
(1)判斷y=x+b和y=-是否存在“等差”函數(shù)?若存在,寫出它們的“等差”函數(shù);
(2)若y=5x+b和y=-存在“等差”函數(shù),且“等差”函數(shù)的圖象與y=-的圖象的一個交點的橫坐標為1,求一次函數(shù)和反比例函數(shù)的表達式;
(3)若一次函數(shù)y=ax+b和反比例函數(shù)y=-(其中a>0,c>0,a=b)存在“等差”函數(shù),且y=ax+b與“等差”函數(shù)有兩個交點A(x1,y1)、B(x2,y2),試判斷“等差”函數(shù)圖象上是否存在一點P(x,y)(其中x1<x<x2),使得△ABP的面積最大?若存在,用c表示△ABP的面積的最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com