【題目】如圖,電子螞蟻P、Q在邊長為1個單位長度的正方形ABCD的邊上運(yùn)動,電子螞蟻P從點(diǎn)A出發(fā),以個單位長度/秒的速度繞正方形作順時針運(yùn)動,電子螞蟻Q從點(diǎn)A出發(fā),以個單位長度秒的速度繞正方形作逆時針運(yùn)動,則它們第2019次相遇在( )
A. 點(diǎn)AB. 點(diǎn)BC. 點(diǎn)CD. 點(diǎn)D
【答案】D
【解析】
設(shè)兩只電子螞蟻每隔x秒相遇一次,根據(jù)正方形周長=二者速度之和×時間,可得出關(guān)于x的一元一次方程,解之即可得出兩只電子螞蟻每隔2秒相遇一次,再結(jié)合電子螞蟻Q的速度、出發(fā)點(diǎn)及運(yùn)動方向可得出它們第1次、第2次、第3次、第4次、第5次……相遇點(diǎn),結(jié)合2019÷4=504……3可得出結(jié)論.
解:設(shè)兩只電子螞蟻每隔x秒相遇一次,
根據(jù)題意得:(+)x=1×4,
解得:x=2.
∵電子螞蟻Q從點(diǎn)A出發(fā),以個單位長度/秒的速度繞正方形作逆時針運(yùn)動,
∴它們第1次相遇在B點(diǎn),第2次相遇在C點(diǎn),第3次相遇在D點(diǎn),第4次相遇在A點(diǎn),第5次相遇在B點(diǎn),第6次相遇在C點(diǎn),….
又∵2019÷4=504……3,
∴第2019次相遇和第3次相遇地點(diǎn)相同,即第2019次相遇在點(diǎn)D.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P從(0,3)出發(fā),沿所示的方向運(yùn)動,每當(dāng)碰到矩形的邊時反彈,反彈時反射角等于入射角,當(dāng)點(diǎn)p第2019次碰到矩形的邊時點(diǎn)P的坐標(biāo)為( 。
A. ( 1,4 )B. ( 5,0 )C. ( 8,3 )D. ( 6,4 )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】蔬菜公司采購了若干噸的某種蔬菜,計劃加工之后銷售,若單獨(dú)進(jìn)行粗加工,需要20天才能完成;若單獨(dú)進(jìn)行精加工,需要30天才能完成,已知每天單獨(dú)粗加工比單獨(dú)精加工多生產(chǎn)10噸.
(1)求公司采購了多少噸這種蔬菜?
(2)據(jù)統(tǒng)計,這種蔬菜經(jīng)粗加工銷售,每噸利潤2000元;經(jīng)精加工后銷售,每噸利潤漲至2500元.受季節(jié)條件限制,公司必須在24天內(nèi)全部加工完畢,由于兩種加工方式不能同時進(jìn)行,公司為盡可能多獲利,安排將部分蔬菜進(jìn)行精加工后,其余蔬菜進(jìn)行粗加工,并恰好24天完成,加工的這批蔬菜若全部售出,求公司共獲得多少元的利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是某市環(huán)城路的一段,AE,BF,CD都是南北方向的街道,其與環(huán)城路AC的交叉路口分別是A,B,C.經(jīng)測量花卉世界D位于點(diǎn)A的北偏東45°方向,點(diǎn)B的北偏東30°方向上,AB=2km,∠DAC=15°.
(1)求B,D之間的距離;
(2)求C,D之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90,∠B=∠C,AE=AF,給出下列結(jié)論:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN。其中正確的結(jié)論有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(2,0),B ( 2,0),C為 y 軸負(fù)半軸上一點(diǎn),D是第四象限內(nèi)一動點(diǎn),且始終有BDA 2ACO 成立,過C 點(diǎn)作CE BD 于點(diǎn) E .
(1)求證:DAC DBC ;
(2)若點(diǎn) F 在 AD 的延長線上,求證:CD 平分BDF ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】經(jīng)過頂點(diǎn)的一條直線,.分別是直線上兩點(diǎn),且.
(1)若直線經(jīng)過的內(nèi)部,且在射線上,請解決下面兩個問題:
①如圖1,若,,
則 ; (填“”,“”或“”);
②如圖2,若,請?zhí)砑右粋關(guān)于與關(guān)系的條件 ,使①中的兩個結(jié)論仍然成立,并證明兩個結(jié)論成立.
(2)如圖3,若直線經(jīng)過的外部,,請?zhí)岢?/span>三條線段數(shù)量關(guān)系的合理猜想(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:解一元二次不等式.
解∵,∴可化為.
由有理數(shù)的乘法法則:兩數(shù)相乘,同號得正,得:①②
解不等式組①,得,解不等式組②,得
∴的解集為或.
即一元二次不等式的解集為或.
(1)一元二次不等式的解集為____________;
(2)試解一元二次不等式;
(3)試解不等式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com