【題目】在平面直角坐標(biāo)系中,已知A,B是拋物線y=ax2(a>0)上兩個(gè)不同的點(diǎn),其中A在第二象限,B在第一象限.
(1)如圖1所示,當(dāng)直線AB與x軸平行,∠AOB=90°,且AB=2時(shí),求此拋物線的解析式和A,B兩點(diǎn)的橫坐標(biāo)的乘積;

(2)如圖2所示,在(1)所求得的拋物線上,當(dāng)直線AB與x軸不平行,∠AOB仍為90°時(shí),求證:A、B兩點(diǎn)橫坐標(biāo)的乘積是一個(gè)定值;

(3)在(2)的條件下,如果直線AB與x軸、y軸分別交于點(diǎn)P、D,且點(diǎn)B的橫坐標(biāo)為 .那么在x軸上是否存在一點(diǎn)Q,使△QDP為等腰三角形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)解:如圖1,

作BE⊥x軸,

∴△AOB是等腰直角三角形,

∴BE=OE= AB=1,

∴A(﹣1,1),B(1,1),

∴A,B兩點(diǎn)的橫坐標(biāo)的乘積為﹣1×1=﹣1,

∵拋物線y=ax2(a>0)過(guò)A,B,

∴a=1,

∴拋物線y=x2


(2)解:如圖2,

作BN⊥x軸,作AM⊥x軸,

∴∠AOB=AMO=∠BNO=90°,

∴∠MAO=∠BON,

∴△AMO∽△ONB,

,

∴AM×BN=OM×ON,

設(shè)A(x1,y1),B(x2,y2)在拋物線上,

∴AM=y1=x12,BN=y2=x22,OM=﹣x1,ON=x2,

∴x12×x22=﹣x1×x2

∴x1×x2=﹣1,

∴A,B兩點(diǎn)橫坐標(biāo)的乘積是一個(gè)定值;


(3)解:由(2)得,A,B兩點(diǎn)橫坐標(biāo)的乘積是一個(gè)定值為﹣1,

∵點(diǎn)B的橫坐標(biāo)為

∴點(diǎn)A的橫坐標(biāo)為﹣2,

∵A,B在拋物線上,

∴A(﹣2,4),B( , ),

∴直線AB解析式為y=﹣ x+1,

∴P( ,0),D(0,1)

設(shè)Q(n,0),

∴DP2= ,PQ2=(n﹣ 2,DQ2=n2+1

∵△QDP為等腰三角形,

∴①DP=PQ,

∴DP2=PQ2,

=(n﹣ 2,

∴n= ,

∴Q1 ,0),Q2 ,0)

②DP=DQ,

∴DP2=DQ2

=n2+1,

∴n= (舍)或n=﹣

Q3(﹣ ,0)

③PQ=DQ,

∴PQ2=DQ2,

∴(n﹣ 2=n2+1

∴n=﹣ ,

∴Q4(﹣ ,0),

∴存在點(diǎn)Q坐標(biāo)為Q1 ,0),Q2 ,0),Q3(﹣ ,0),Q4(﹣ ,0),


【解析】(1)利用拋物線性質(zhì)及待定系數(shù)法可求出解析式及橫坐標(biāo)乘積;(2)通過(guò)“作BN⊥x軸,作AM⊥x軸”構(gòu)造相似三角形,即△AMO∽△ONB,對(duì)應(yīng)邊成比例,轉(zhuǎn)化為乘積式,A,B兩點(diǎn)橫坐標(biāo)的乘積是一個(gè)定值;(3)利用(2)的結(jié)論求出A、B坐標(biāo),若△QDP為等腰三角形,須分類討論,即①DP=PQ②DP=DQ③PQ=DQ,分別求出Q坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,E、F是平行四邊行ABCD的對(duì)角線AC上的 兩點(diǎn),AE=CF。

求證:(1)△ADF≌△CBE

(2)EB∥DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛出租車(chē)從超市(點(diǎn))出發(fā),向東走到達(dá)小李家(點(diǎn)),繼續(xù)向東走到達(dá)小張家(點(diǎn)),然后又回頭向西走到達(dá)小陳家(點(diǎn)),最后回到超市.

1)以超市為原點(diǎn),向東方向?yàn)檎较,?/span>表示,畫(huà)出數(shù)軸,并在該數(shù)軸上表示、、的位置;

2)小陳家(點(diǎn))距小李家(點(diǎn))有多遠(yuǎn)?

3)若出租車(chē)收費(fèi)標(biāo)準(zhǔn)如下,以內(nèi)包括收費(fèi)元,超過(guò)部分按每千米元收費(fèi),則從超市出發(fā)到回到超市一共花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心,在周?chē)鷶?shù)十千米范圍內(nèi)形氣旋風(fēng)暴,有極強(qiáng)的破壞力,此時(shí)某臺(tái)風(fēng)中心在海域B處,在沿海城市A的正南方向240千米,其中心風(fēng)力為12級(jí),每遠(yuǎn)離臺(tái)風(fēng)中心25千米,臺(tái)風(fēng)就會(huì)減弱一級(jí),如圖所示,該臺(tái)風(fēng)中心正以20千米/時(shí)的速度沿北偏東30°方向向C移動(dòng),且臺(tái)風(fēng)中心的風(fēng)力不變,若城市所受風(fēng)力達(dá)到或超過(guò)4級(jí),則稱受臺(tái)風(fēng)影響. 試問(wèn):

(1)A城市是否會(huì)受到臺(tái)風(fēng)影響?請(qǐng)說(shuō)明理由.

(2)若會(huì)受到臺(tái)風(fēng)影響,那么臺(tái)風(fēng)影響該城市的持續(xù)時(shí)間有多長(zhǎng)?

(3)該城市受到臺(tái)風(fēng)影響的最大風(fēng)力為幾級(jí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花店準(zhǔn)備購(gòu)進(jìn)甲、乙兩種花卉,若購(gòu)進(jìn)甲種花卉20盆,乙種花卉50盆,需要900元;若購(gòu)進(jìn)甲種花卉40盆,乙種花卉30盆,需要960元.

(1)求購(gòu)進(jìn)甲、乙兩種花卉每盆各需多少元?

(2)該花店購(gòu)進(jìn)甲,乙兩種花卉共100盆,甲種花卉每盆售價(jià)20元,乙種花齊每盆售價(jià)16元,現(xiàn)該花店把100盆花卉全部售出,若獲利超過(guò)480元,則至少購(gòu)進(jìn)甲種花卉多少盆?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直線ACBD,連接AB,直線AC、BD及線段AB把平面分成①、②、③、④四個(gè)部分,規(guī)定:線上各點(diǎn)不屬于任何部分.當(dāng)動(dòng)點(diǎn)P落在某個(gè)部分時(shí),連接PA、PB,構(gòu)成∠PAC、∠APB、∠PBD三個(gè)角(提示:有公共端點(diǎn)的兩條重合的射線所組成的角是0°).

1)當(dāng)動(dòng)點(diǎn)P落在第①部分時(shí),求證:∠APB=∠PAC+∠PBD

2)當(dāng)動(dòng)點(diǎn)P落在第②部分時(shí),∠APB=∠PAC+∠PBD是否成立(直接回答成立或不成立);

3)當(dāng)動(dòng)點(diǎn)P在第③部分時(shí),全面探究∠PAC、∠APB、∠PBD之間的關(guān)系,并寫(xiě)出動(dòng)點(diǎn)P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形ABCD中,連接BD.
(1)如圖1,AE⊥BD于E.直接寫(xiě)出∠BAE的度數(shù).

(2)如圖1,在(1)的條件下,將△AEB以A旋轉(zhuǎn)中心,沿逆時(shí)針?lè)较蛐D(zhuǎn)30°后得到△AB′E′,AB′與BD交于M,AE′的延長(zhǎng)線與BD交于N.
①依題意補(bǔ)全圖1;
②用等式表示線段BM、DN和MN之間的數(shù)量關(guān)系,并證明.
(3)如圖2,E、F是邊BC、CD上的點(diǎn),△CEF周長(zhǎng)是正方形ABCD周長(zhǎng)的一半,AE、AF分別與BD交于M、N,寫(xiě)出判斷線段BM、DN、MN之間數(shù)量關(guān)系的思路.(不必寫(xiě)出完整推理過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在△ABC中,∠ABC與∠ACB的平分線相交于點(diǎn)P

(1)如果∠A=80°,求∠BPC的度數(shù);

(2)如圖②,作△ABC外角∠MBC,∠NCB的角平分線交于點(diǎn)Q,試探索∠Q、∠A之間的數(shù)量關(guān)系.

(3)如圖③,延長(zhǎng)線段BP、QC交于點(diǎn)E,△BQE中,存在一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊上的中線,過(guò)點(diǎn)的延長(zhǎng)線于點(diǎn)外一點(diǎn),連接,且.求證:

1;

2CA平分

查看答案和解析>>

同步練習(xí)冊(cè)答案