【題目】一輛出租車從超市(點)出發(fā),向東走到達(dá)小李家(點),繼續(xù)向東走到達(dá)小張家(點),然后又回頭向西走到達(dá)小陳家(點),最后回到超市.
(1)以超市為原點,向東方向為正方向,用表示,畫出數(shù)軸,并在該數(shù)軸上表示、、、的位置;
(2)小陳家(點)距小李家(點)有多遠(yuǎn)?
(3)若出租車收費標(biāo)準(zhǔn)如下,以內(nèi)包括收費元,超過部分按每千米元收費,則從超市出發(fā)到回到超市一共花費多少元?
【答案】(1)見解析;(2)6千米;(3)61元.
【解析】
(1)根據(jù)數(shù)軸與點的對應(yīng)關(guān)系,可知超市(O點)在原點,小李家(點)所在位置表示的數(shù)是+2,小張家(點)所在位置表示的數(shù)是+6,小陳家(點)所在位置表示的數(shù)是-4,畫出數(shù)軸即可;
(2)根據(jù)數(shù)軸上兩點的距離求出即可;
(3)先計算一共行駛了多少千米,再根據(jù)收費算出費用即可.
(1)根據(jù)數(shù)軸與點的對應(yīng)關(guān)系,可知超市(O點)在原點,小李家(點)所在位置表示的數(shù)是+2,小張家(點)所在位置表示的數(shù)是+6,小陳家(點)所在位置表示的數(shù)是-4,畫出數(shù)軸如圖所示:
(2)從數(shù)軸上值,小陳家(點)和小李家(點)距離為:2-(-4)=6(千米);
(3)一共行駛了:2+4+10+4=20(千米),
則一共花費了:10+(20-3)×3=61(元),
則從超市出發(fā)到回到超市一共花費61元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣2x+2與x軸、y軸分別交于A、B兩點,△BAC為等腰直角三角形,且∠BAC=90°.若點C恰好落在函數(shù)y= (x>0)在第一象限內(nèi)的圖象上,則k的值為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A、C分別在的正半軸上,點B的坐標(biāo)為(3,4)一次函數(shù)的圖象與邊OC、AB分別交于點D、E,并且滿足OD= BE.點M是線段DE上的一個動點.
(1)求b的值;
(2)連結(jié)OM,若三角形ODM的面積與四邊形OAEM的面積之比為1:3,求點M的坐標(biāo);
(3)設(shè)點N是軸上方平面內(nèi)的一點,以O(shè)、D、M、N為頂點的四邊形是菱形,求點N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,D是直線BC上一點(不與點B、C重合),以AD為一邊在AD的右側(cè)作△ADE,AD=AE,∠DAE=∠BAC,連接CE.
(1)如左下圖,當(dāng)點D在線段BC上時,寫出△ABD≌△ACE的理由;
(2)如下中圖,當(dāng)點D在線段BC上,∠BAC=90°,直接寫出∠BCE的度數(shù);
(3)如右下圖,若∠BCE=α,∠BAC=β.點D在線段CB的延長線上時,則α、β之間有怎樣的數(shù)量關(guān)系?寫出你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(-4,4),點B的坐標(biāo)為(0,2).
(1)求直線AB的解析式;
(2)以點A為直角頂點作∠CAD=90°,射線AC交x軸的負(fù)半軸于點C,射線AD交y軸的負(fù)半軸于點D.當(dāng)∠CAD繞著點A旋轉(zhuǎn)時,OC-OD的值是否發(fā)生變化?若不變,求出它的值;若變化,求出它的變化范圍;
(3)如圖2,點M(-4,0)和N(2,0)是x軸上的兩個點,點P是直線AB上一點.當(dāng)△PMN是直角三角形時,請求出滿足條件的所有點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平行四邊形ABCD,AC、BD相交于點O,AB=4,AC=6,BD=10.(1)求∠ACD的度數(shù);(2)求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列哪個條件不能判定△ABM≌△CDN( )
A.AM=CNB.AB=CD C.AM∥CN D.∠M=∠N
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A,B是拋物線y=ax2(a>0)上兩個不同的點,其中A在第二象限,B在第一象限.
(1)如圖1所示,當(dāng)直線AB與x軸平行,∠AOB=90°,且AB=2時,求此拋物線的解析式和A,B兩點的橫坐標(biāo)的乘積;
(2)如圖2所示,在(1)所求得的拋物線上,當(dāng)直線AB與x軸不平行,∠AOB仍為90°時,求證:A、B兩點橫坐標(biāo)的乘積是一個定值;
(3)在(2)的條件下,如果直線AB與x軸、y軸分別交于點P、D,且點B的橫坐標(biāo)為 .那么在x軸上是否存在一點Q,使△QDP為等腰三角形?若存在,請直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對多項式(x2-4x+2)(x2-4x+6)+4進行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請直接寫出因式分解的最后結(jié)果_________ .
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com