【題目】如圖,在中,,,以為直徑的于點,點邊上一點(點不與點,重合),的延長線交于點,,且交于點

1)求證:

2)連接,,求證:

3)若,,求的長.

【答案】(1)見解析;(2)見解析;(3)

【解析】

1)連接BD,由三角形ABC為等腰直角三角形,求出∠A與∠C的度數(shù),根據(jù)AB為圓的直徑,利用圓周角定理得到∠ADB為直角,即BD垂直于AC,利用直角三角形斜邊上的中線等于斜邊的一半,得到ADDCBDAC,進(jìn)而確定出∠A=∠FBD,再利用同角的余角相等得到一對角相等,利用ASA得到三角形AED與三角形BFD全等,利用全等三角形對應(yīng)邊相等即可得證;

2)連接EF,BG,由三角形AED與三角形BFD全等,得到EDFD,進(jìn)而得到三角形DEF為等腰直角三角形,利用圓周角定理及等腰直角三角形性質(zhì)得到一對同位角相等,利用同位角相等兩直線平行即可得證;

3)由全等三角形對應(yīng)邊相等得到AEBF2,在直角三角形BEF中,利用勾股定理求出EF的長,利用銳角三角形函數(shù)定義求出DE的長,利用兩對角相等的三角形相似得到三角形AED與三角形GEB相似,由相似得比例,求出GE的長,由GEED求出GD的長即可.

1)證明:連接

如圖,在中,,

的直徑,

,即,

,

,

,

,

,

中,

,

2)證明:如圖,由(1)知

是等腰直角三角形,

,

3)解:,

中,,

根據(jù)勾股定理得

,

為等腰直角三角形,,

,

,,

,

,即,

,即,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點為坐標(biāo)原點,拋物線軸交于點(點在點的左側(cè)),與軸正半軸交于點

1)如圖1,求的值;

2)如圖2,拋物線的頂點坐標(biāo)是,點是第一象限拋物線上的一點,連接交拋物線的對稱軸于點,設(shè)點的橫坐標(biāo)是,線段的長為,求的函數(shù)關(guān)系式;

3)如圖3,在(2)的條件下,當(dāng)時,過點軸交拋物線于點,點軸下方拋物線上的一個動點,連接軸于點,直線經(jīng)過點于點,連接,過點于點,若,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形,,連接,.若繞點旋轉(zhuǎn),當(dāng)最大時,__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖所示,在平面直角坐標(biāo)系中,半徑均為1個單位長度的半圓O1,O2,O3, 組成一條平滑的曲線,點P從原點O出發(fā),沿這條曲線向右運動,速度為每秒個單位長度,則第2015秒時,點P的坐標(biāo)是( ).

A.(2014,0) B.(2015,-1) C. (2015,1) D. (2016,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB是非直徑弦,弦CDAB,

1)當(dāng)CD經(jīng)過圓心時(如圖①),∠AOC+DOB=__________;

2)當(dāng)CD不經(jīng)過圓心時(如圖②),∠AOC+DOB的度數(shù)與(1)的情況相同嗎?試說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,點E、F分別在AB、CD邊上,AD=6,AB=8,將△CBE沿CE翻折,使B點的對應(yīng)點B剛好落在對角線AC上,將△ADF沿AF翻折,使D點的對應(yīng)點D也恰好落在對角線AC上,連接EF,則EF的長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮進(jìn)行摸牌游戲,如圖,他們有四張除牌面數(shù)字不同外、其他地方完全相同的紙牌,牌面數(shù)字分別為45,6,7,他們把紙牌背面朝上,充分洗勻后,從這四張紙牌中摸出一張,記下數(shù)字放回后,再次重新洗勻,然后再摸出一張,再次記下數(shù)字,將兩次數(shù)字之和做為對比結(jié)果.若兩次數(shù)字之和大于11,則小明勝;若兩次數(shù)字之和小于11,則小亮勝.

1)請你用列表法或樹狀圖列出這個摸牌游戲中所有可能出現(xiàn)的結(jié)果.

2)這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中,.

(1)若直線經(jīng)過兩點,求直線和拋物線的解析式;

(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標(biāo);

(3)設(shè)點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點A的坐標(biāo)為(4,0),點B的坐標(biāo)為(0,3),在第一象限內(nèi)找一點P(a,b) ,使PAB為等邊三角形,則2(a-b)=___________

查看答案和解析>>

同步練習(xí)冊答案