【題目】如圖,矩形ABCD中,AB=8,BC=6,邊CD在直線l上,將矩形ABCD沿直線l作無滑動(dòng)翻滾,當(dāng)點(diǎn)A第一次翻滾到點(diǎn)A1位置時(shí),則點(diǎn)A經(jīng)過的路線長(zhǎng)為 .
【答案】12π.
【解析】
試題分析:如圖根據(jù)旋轉(zhuǎn)的性質(zhì)知,點(diǎn)A經(jīng)過的路線長(zhǎng)是三段:①以90°為圓心角,AD長(zhǎng)為半徑的扇形的弧長(zhǎng);②以90°為圓心角,AB長(zhǎng)為半徑的扇形的弧長(zhǎng);③90°為圓心角,矩形ABCD對(duì)角線長(zhǎng)為半徑的扇形的弧長(zhǎng).∵四邊形ABCD是矩形,AB=8,BC=6,∴BC=AD=3,∠ADC=90°,對(duì)角線AC(BD)=10.∵根據(jù)旋轉(zhuǎn)的性質(zhì)知,∠ADA′=90°,AD=A′D=BC=6,∴點(diǎn)A第一次翻滾到點(diǎn)A′位置時(shí),則點(diǎn)A′經(jīng)過的路線長(zhǎng)為:=3π.同理,點(diǎn)A′第一次翻滾到點(diǎn)A″位置時(shí),則點(diǎn)A′經(jīng)過的路線長(zhǎng)為:=4π.點(diǎn)A″第一次翻滾到點(diǎn)位置時(shí),則點(diǎn)A″經(jīng)過的路線長(zhǎng)為:=5π.則當(dāng)點(diǎn)A第一次翻滾到點(diǎn)位置時(shí),則點(diǎn)A經(jīng)過的路線長(zhǎng)為:3π+4π+5π=12π.
故答案是:12π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)了1200件襯衫,根據(jù)以往經(jīng)驗(yàn)其合格率為0.95左右,則這1200件襯衫中次品(不合格)的件數(shù)大約為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=+bx+c的圖象與x軸交于A、B兩點(diǎn),A點(diǎn)在原點(diǎn)的左則,B點(diǎn)的坐標(biāo)為(3,0),與y軸交于C(0,﹣3)點(diǎn),點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)求出四邊形ABPC的面積最大時(shí)的P點(diǎn)坐標(biāo)和四邊形ABPC的最大面積;
(3)連結(jié)PO、PC,在同一平面內(nèi)把△POC沿y軸翻折,得到四邊形POP′C,是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(4)在直線BC找一點(diǎn)Q,使得△QOC為等腰三角形,請(qǐng)直接寫出Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“六一”兒童節(jié)前,玩具商店根據(jù)市場(chǎng)調(diào)查,用2500元購進(jìn)一批兒童玩具,上市后很快脫銷,接著又用4500元購進(jìn)第二批這種玩具,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價(jià)多了10元.第一、二批玩具每套的進(jìn)價(jià)分別是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com