【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,2),與y軸的負(fù)半軸交于點(diǎn)B,且OB=6.
(1)求函數(shù)y=和y=kx+b的解析式;
(2)已知直線AB與x軸相交于點(diǎn)C,在第一象限內(nèi),求反比例函數(shù)y=的圖象上一點(diǎn)P,使得S△POC=9.
【答案】(1) y=2x-6;(2) P(,6).
【解析】
(1)把點(diǎn)A(4,2)代入反比例函數(shù)y= ,可得反比例函數(shù)解析式,把點(diǎn)A(4,2),B(0,-6)代入一次函數(shù)y=kx+b,可得一次函數(shù)解析式;
(2)根據(jù)C(3,0),可得CO=3,設(shè)P(a, ),根據(jù)S△POC=9,可得
×3×=9,解得a= ,即可得到點(diǎn)P的坐標(biāo).
解:(1)把點(diǎn)A(4,2)代入反比例函數(shù)y=可得m=8,
∴反比例函數(shù)的解析式為y=.
∵OB=6,∴B(0,-6).
把點(diǎn)A(4,2),B(0,-6)代入一次函數(shù)y=kx+b,得
解得
∴一次函數(shù)的解析式為y=2x-6.
(2)在y=2x-6中,令y=0,則x=3,即C(3,0),
∴CO=3.
設(shè)P(a,),則由S△POC=9,可得
×3×=9.解得a=.
∴P(,6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE是過(guò)點(diǎn)A的直線,BDDE于點(diǎn)D, CEDE 于點(diǎn) E.
(1)若BC在DE的同側(cè)(如圖所示),且AD=CE,求證:
(2)若B、C在的兩側(cè)(如圖所示 ),其他條件不變,AB與AC仍垂直嗎?若是請(qǐng)給出證明;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a、b可以取﹣2、﹣1、1、2中任意一個(gè)值(a≠b),則直線y=ax+b的圖象不經(jīng)過(guò)第四象限的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E是正方形ABCD的邊CD的中點(diǎn),AE的垂直平分線分別交AE、BC于H、G.若CG=7,則正方形ABCD的面積等于_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD(四邊相等、四內(nèi)角相等)中,AD=5,點(diǎn)E、F是正方形ABCD內(nèi)的兩點(diǎn),且AE=FC=4,BE=DF=3,則EF的平方為( 。
A.2B.C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AO平分∠BAC,AO⊥BC,DE⊥BC,GH⊥BC,垂足分別為O、E、H,且DO∥AC,∠B=43°,則圖中角的度數(shù)為47°的角的個(gè)數(shù)是( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度沿折線A﹣B﹣C﹣A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)AC= cm;
(2)若點(diǎn)P恰好在∠ABC的角平分線上,求此時(shí)t的值;
(3)在運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),△ACP為等腰三角形(直接寫(xiě)出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CD平分∠ACB交AB于點(diǎn)D,E為AC上一點(diǎn),且DE∥BC
(1)求證:DE=CE;
(2)若∠A=90°,S△BCD=26,BC=13,求AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求證:AD平分∠BAC;
(2)直接寫(xiě)出AB+AC與AE之間的等量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com