【題目】如圖,△ABC中,∠ACB90°AB5cm,BC4cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度沿折線ABCA運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt0)秒.

1AC   cm;

2)若點(diǎn)P恰好在∠ABC的角平分線上,求此時(shí)t的值;

3)在運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),△ACP為等腰三角形(直接寫出結(jié)果)

【答案】13;(2t的值為5s;(3)當(dāng)t36s時(shí),△ACP為等腰三角形.

【解析】

1)利用勾股定理求解即可;(2)作∠ABC的平分線與AC的交點(diǎn)確定點(diǎn)P,利用全等得PC=PD,再用勾股定理求得PC的長(zhǎng),點(diǎn)P的運(yùn)動(dòng)路線長(zhǎng)即可求出,由此解得t值(3)分四種情況,找到P點(diǎn),即可求出t的值.

解:(1)在RtABC中,∠C=90°AB=5cm,BC=4cm

AC==3cm.

2)如圖,過PPDABD,

BP平分∠ABC,∠C90°

PDPC,

又∵BP=BP,

RtBDPRtBCP

BDBC4,

AD541,

設(shè)PDPCy,則AP3y,

RtADP中,AD2+PD2AP2,

12+y2=(3y2,

解得y,

CP

t5+4+=;

當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),點(diǎn)P也在∠ABC的角平分線上,

此時(shí),t=5;

綜上所述,點(diǎn)P恰好在∠ABC的角平分線上,t的值為5s

3)分四種情況:

①如圖①,當(dāng)AP=CP時(shí),則∠A=ACP,

∵∠A+B=900,∠ACP+BCP=900

∴∠B=BCP

BP=CP=AP

AP=

t;

②如圖②,當(dāng)AP=AC=3時(shí),t3

③當(dāng)PC=AC=3時(shí),過點(diǎn)CCDAB于點(diǎn)D,

SABC==ABCD

5CD=12,

CD=,

PD=AD=

AP=

t=

④當(dāng)PC=AC=3時(shí),BP=4-3=1,則AB+BP=5+1=6,∴t6

綜上所述,當(dāng)t36s時(shí),ACP為等腰三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AC上取點(diǎn)B,在其同一側(cè)作兩個(gè)等邊三角形ABD BCE ,連接AECDGF,下列結(jié)論正確的有(

AE DC;②AHC120;③AGB≌△DFB;④BH平分AHC;⑤GFAC

A.①②④B.①③⑤C.①③④⑤D.①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,花果山上有兩只猴子在一棵樹CD上的點(diǎn)B處,且BC=5m,它們都要到A處吃東西,其中一只猴子甲沿樹爬下走到離樹10m處的池塘A處,另一只猴子乙先爬到樹頂D處后再沿纜繩DA線段滑到A處.已知兩只猴子所經(jīng)過的路程相等,設(shè)BDxm

1)請(qǐng)用含有x整式表示線段AD的長(zhǎng)為______m;

2)求這棵樹高有多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,二次函數(shù)yax22ax3aa0)的圖象與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D

1)求頂點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示);

2)若以AD為直徑的圓經(jīng)過點(diǎn)C

①求拋物線的函數(shù)關(guān)系式;

②如圖2,點(diǎn)Ey軸負(fù)半軸上一點(diǎn),連接BE,將△OBE繞平面內(nèi)某一點(diǎn)旋轉(zhuǎn)180°,得到△PMN(點(diǎn)P、MN分別和點(diǎn)O、BE對(duì)應(yīng)),并且點(diǎn)MN都在拋物線上,作MFx軸于點(diǎn)F,若線段MFBF12,求點(diǎn)M、N的坐標(biāo);

③點(diǎn)Q在拋物線的對(duì)稱軸上,以Q為圓心的圓過A、B兩點(diǎn),并且和直線CD相切,如圖3,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, △ABC中,AB=AC,∠A=36°,AC的垂直平分線交AB于E,D為垂足,連結(jié)EC

⑴求∠ECD的度數(shù);

⑵若CE=5,求CB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,(1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1

(2)在y軸上畫出點(diǎn)P,使PA+PC最小;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=6,BC=10,AB的垂直平分線分別交BC、AB于點(diǎn)D、E.

(1)△ACD的周長(zhǎng);

(2)∠C=25°,求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,長(zhǎng)方形ABCD中,AB5,AD12EAD邊上一點(diǎn),DE4,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BCD2個(gè)單位/s作勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t

當(dāng)t s時(shí),ABPCDE全等;

如圖2,EFAEP的高,當(dāng)點(diǎn)PBC邊上運(yùn)動(dòng)時(shí),EF的最小值是

當(dāng)點(diǎn)PEC的垂直平分線上時(shí),求出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:通過小學(xué)的學(xué)習(xí)我們知道,分?jǐn)?shù)可分為真分?jǐn)?shù)假分?jǐn)?shù),而假分?jǐn)?shù)都可化為帶分?jǐn)?shù),如:我們定義:在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為假分式;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為真分式

這樣的分式就是假分式;再如:這樣的分式就是真分式類似的,假分式也可以化為帶分式(即:整式與真分式的和的形式)

如:

解決下列問題:

(1)分式______分式(真分式假分式”);

(2)將假分式化為帶分式;

(3)如果x為整數(shù),分式的值為整數(shù),求所有符合條件的x的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案