【題目】我們把函數(shù)y1=x2-3x+2(x>0)沿y軸翻折得到函數(shù)y2,函數(shù)y1與函數(shù)y2的圖象合起來組成函數(shù)y3的圖象.若直線y=kx+2與函數(shù)y3的圖象剛好有兩個交點,則滿足條件的k的值為______.
【答案】-3<k<3
【解析】
根據(jù)翻折找出函數(shù)y2的解析式,將直線y=kx+2分別代入函數(shù)y1和y2的解析式中,求出x的值,根據(jù)x的取值范圍列出關(guān)于k的一元一次不等式組,解不等式組即可得出結(jié)論.
解:依照題意畫出圖形,如圖所示.
∵函數(shù)y1=x2-3x+2(x>0)沿y軸翻折得到函數(shù)y2,
∴y2=x2+3x+2(x<0).
若要直線y=kx+2與函數(shù)y3的圖象剛好有兩個交點,則需直線y=kx+2與y1、y2均有交點.
將直線y=kx+2分別代入y1、y2中得:
x2-(3+k)x=0,x2+(3-k)x=0.
解得:x1=3+k,x2=k-3,x3=0(舍去).
∵y1=x2-3x+2(x>0),
∴x1=3+k>0;
∵y2=x2+3x+2(x<0),
x2=k-3<0.
聯(lián)立得:
,
解得:-3<k<3.
故答案為:-3<k<3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,的位置如圖所示:(每個小方格都是邊長為1個單位長度的正方形)
(1)畫出關(guān)于點的中心對稱圖形△;
(2)將繞著點逆時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后得到的△;
(3)請利用格點圖,僅用無刻度的直尺畫出邊上的高(保留作圖痕跡);
(4)P為軸上一點,且△PBC是以BC為直角邊的直角三角形.請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖1,是的直徑,點在上,,垂足為,,分別交、于點、.求證:.
圖1 圖2
(1)本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請你完整地書寫本題的證明過程.
(2)如圖2,若點和點在的兩側(cè),、的延長線交于點,的延長線交于點,其余條件不變,(1)中的結(jié)論還成立嗎?請說明理由;
(3)在(2)的條件下,若,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3交x軸于點A(﹣1,0)和點B(3,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)連接BC,若點P為線段BC上的一個動點(不與點B、點C重合),過點P作直線PN⊥x軸于點N,交拋物線于點M,當(dāng)△BCM面積最大時,求△BPN的周長.
(3)在(2)的條件下,當(dāng)△BCM面積最大時,在拋物線的對稱軸上是否存在點Q,使△CNQ為等腰三角形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,點D為△ABC內(nèi)的一點,∠ADB=120°,∠ADC=90°,將△ABD繞點A逆時針旋轉(zhuǎn)60°得△ACE,連接DE.
(1)求證:AD=DE;
(2)求∠DCE的度數(shù);
(3)若BD=1,求AD,CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P是⊙O上一點,過點P作不過圓心的弦PQ,在劣弧PQ和優(yōu)弧PQ上分別有動點A、B(不與P,Q重合),連接AP、BP. 若∠APQ=∠BPQ.
(1)如圖1,當(dāng)∠APQ=45°,AP=1,BP=2時,求⊙O的半徑;
(2)如圖2,選接AB,交PQ于點M,點N在線段PM上(不與P、M重合),連接ON、OP,若∠NOP+2∠OPN=90°,探究直線AB與ON的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,∠ABC的平分線交AD邊于點E,點F是CD的中點,連接EF,若AB=8,且EF平分∠BED,則AD的長為_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為⊙O內(nèi)接等邊三角形,將△ABC繞圓心O旋轉(zhuǎn)30°到△DEF處,連接AD、AE,則∠EAD的度數(shù)為( )
A.150°B.135°C.120°D.105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如右圖,正方形ABCD的邊長為2,點E是BC邊上一點,以AB為直徑在正方形內(nèi)作半圓
O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com