精英家教網 > 初中數學 > 題目詳情

【題目】如右圖,正方形ABCD的邊長為2,點EBC邊上一點,以AB為直徑在正方形內作半圓

O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )

A. B. C. D.

【答案】A

【解析】通過證明△ODF≌△ODA,可以得到F是⊙O的切線,然后在直角△BOE中利用勾股定理計算出線段CE的長.

詳解:如圖:連接OF,OD.

在△ODF和△ODA中,

OF=OADA=DF,DO=DO,

∴△ODF≌△ODA,

∴∠OFD=∠OAD=90°,

DF是⊙O的切線。

∵∠DFE=∠C=90°,

EF,O三點共線。

EF=EC,

∴在△BEO中,BO=1,BE=2CE,EO=1+CE,

∴(1+CE) =1+(2CE),

解得:BE=.

故選A.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在等邊ABCDABC內的一點,ADB=120°,ADC=90°ABD繞點A逆時針旋轉60°ACE,連接DE

1)求證AD=DE

2)求DCE的度數;

3)若BD=1AD,CD的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,ABAC,以AB為直徑的⊙OBC相交于點D,與CA的延長線相交于點E,過點DDFAC于點F

1)證明:DF是⊙O的切線;

2)若AC3AE,FC6,求AF的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】創(chuàng)客聯(lián)盟的隊員想用3D打印完成一幅邊長為6米的正方形作品ABCD,設計圖案如圖所示(四周陰影是四個全等的矩形,用材料甲打;中心區(qū)是正方形MNPQ,用材料乙打。诖蛴『穸缺3窒嗤那闆r下,兩種材料的消耗成本如下表:

材料

價格(元/2

80

50

設矩形的較短邊AH的長為x米,打印材料的總費用為y元.

1MQ的長為   米(用含x的代數式表示);

2)求y關于x的函數解析式;

3)當中心區(qū)的邊長不小于2米時,預備材料的購買資金2800元夠用嗎?請利用函數的增減性來說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,AB是圓O的一條弦,C是優(yōu)弧 上一點.

(1)若∠ACB=45°,PO上一點(不與A.B重合),則∠APB=___;

(2)如圖②,若點P是弦AB所圍成的弓形區(qū)域(不含弦AB)內一點.求證:∠APB>ACB;

(3)請在圖③中直接用陰影部分表示出在弦AB所圍成的弓形區(qū)域內滿足

的點P所在的范圍;

4)在(1)的條件下,以PB為邊,向右作等腰直角三角形PBQ,連結AQ,如圖4,已知AB=2,

①當點Q在線段AB的延長線上時,線段AQ的長為____________

②線段AQ的最小值為_____________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如右圖,正方形ABCD的邊長為2,點EBC邊上一點,以AB為直徑在正方形內作半圓

O,將△DCE沿DE翻折,點C剛好落在半圓O的點F處,則CE的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,C=90°,ACD沿AD折疊,使得點C落在斜邊AB上的點E處.

(1)求證:BDE∽△BAC;

(2)已知AC=6,BC=8,求線段AD的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數

(1)將其化成的形式_______________;

(2)頂點坐標_________對稱軸方程_______________;

(3)用五點法畫出二次函數的圖象;

(4) 時,寫出的取值范圍

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,點A(,0),B(,0),C(0,).D,E分別是線段ACCB上的點,CDCE.將△CDE繞點C逆時針旋轉一個角度α.

(1)α90°,在旋轉過程中當點AD,E在同一直線上時,連接ADBE,如圖2.求證:ADBE,且ADBE

(2)α360°,D,E恰好是線段ACCB上的中點,在旋轉過程中,當DEAC時,求α的值及點E的坐標.

查看答案和解析>>

同步練習冊答案