【題目】如圖,矩形ABCD中,∠ABC的平分線交AD邊于點E,點FCD的中點,連接EF,若AB8,且EF平分∠BED,則AD的長為_________

【答案】4+4

【解析】

首先證明AE=AB=8,BE=BG=8,再證明ED=CG,設(shè)AD=BC=x,構(gòu)建方程即可解決問題.

解:延長EFBC的延長線于G

∵矩形ABCD中,

ADBC,

∴∠AEB=EBC,

∵∠ABC的平分線交AD邊于點E,

∴∠ABE=EBC,

∴∠ABE=AEB,

AB=AE=8,

∵∠DEG=BEG=G,

BE=BG=8,

DF=FC,∠EDF=FCG,∠EFD=CFG

∴△EFD≌△GFC,

DE=CG,

設(shè)AD=BC=x,則DE=x-8,CG=8-x

x-8=8-x,

解得:x=4+4

AD=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:對于給定的兩個函數(shù),任取自變量x的一個值,當(dāng)x0時,它們對應(yīng)的函數(shù)值互為相反數(shù);當(dāng)x0時,它們對應(yīng)的函數(shù)值相等,我們稱這樣的兩個函數(shù)互為相關(guān)函數(shù).例如:一次函數(shù)yx2,它的相關(guān)函數(shù)為

1)已知點A(﹣3,8)在一次函數(shù)yax5的相關(guān)函數(shù)的圖象上,求a的值;

2)已知二次函數(shù)y=﹣x2+4x1.當(dāng)點Bm,2)在這個函數(shù)的相關(guān)函數(shù)的圖象上時,求m的值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的正方形網(wǎng)格,△ABC的頂點在網(wǎng)格上,在建立平面直角坐標(biāo)系后,點B的坐標(biāo)是(-1,-1)

(1)把△ABC向左平移10格得到,畫出;

(2)畫出關(guān)于x軸對稱的圖形;

(3)把△ABC繞點C順時針旋轉(zhuǎn)90°后得到,畫出,并寫出點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把函數(shù)y1x23x2(x0)沿y軸翻折得到函數(shù)y2,函數(shù)y1與函數(shù)y2的圖象合起來組成函數(shù)y3的圖象.若直線ykx2與函數(shù)y3的圖象剛好有兩個交點,則滿足條件的k的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過某點且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點的特征線.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.

問題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過BC兩點,頂點D在正方形內(nèi)部.

(1)直接寫出點D(m,n)所有的特征線;

(2)若點D有一條特征線是y=x+1,求此拋物線的解析式;

(3)點PAB邊上除點A外的任意一點,連接OP,將OAP沿著OP折疊,點A落在點A的位置,當(dāng)點A在平行于坐標(biāo)軸的D點的特征線上時,滿足(2)中條件的拋物線向下平移多少距離,其頂點落在OP上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為4,一個以點A為頂點的45°角繞點A旋轉(zhuǎn),角的兩邊分別與BC、DC的延長線交于點E、F,連接EF,設(shè)CE=a,CF=b.

(1)如圖1,當(dāng)a=4時,求b的值;

(2)當(dāng)a=4時,如圖2,求出b的值;

(3)如圖3,請寫出EAF繞點A旋轉(zhuǎn)的過程中a、b滿足的關(guān)系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A2,3),B(﹣3,n)兩點.

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)根據(jù)所給條件,請直接寫出不等式kx+b的解集;

3)過點BBCx軸,垂足為C,求SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖將弧BC沿弦BC折疊交直徑AB于點D,若AD2,DB4,則弦BC的長是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y =x2 + 4x + 3

1)將二次函數(shù)的表達式化為y = a (x-h)2 + k 的形式;

2)在平面直角坐標(biāo)系xOy中,用描點法畫出這個二次函數(shù)的圖象;

x

y

3)觀察圖象,直接寫出當(dāng)的取值范圍;

4)根據(jù)(2)中的圖象,寫出一條該二次函數(shù)的性質(zhì).

查看答案和解析>>

同步練習(xí)冊答案