【題目】已知點P為某個封閉圖形邊界上一定點,動點M從點P出發(fā),沿其邊界順時針勻速運動一周,設(shè)點M的運動時間為x,線段PM的長度為y,表示y與x的函數(shù)圖象大致如圖所示,則該封閉圖形可能是( 。
A.B.C.D.
科目:初中數(shù)學 來源: 題型:
【題目】我市某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)精準扶貧,幫助貧困戶承包了若干畝土地種植新品草莓,已知該草莓的成本為每千克10元,草莓成熟后投入市場銷售,經(jīng)市場調(diào)查發(fā)現(xiàn),草莓銷售不會虧本,且每天的銷售量y(千克)與銷售單價x(元/千克)之間函數(shù)關(guān)系如圖所示.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)當該品種草莓的定價為多少時,每天銷售獲得利潤最大?最大利潤是多少?
(3)某村今年草莓采摘期限30天,預(yù)計產(chǎn)量6000千克,則按照(2)中的方式進行銷售,能否銷售完這批草莓?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近幾年,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也在逐年增加,某商場從廠家購進了A,B兩種型號的空氣凈化器,兩種凈化器的銷售相關(guān)信息見表:
A型銷售數(shù)量(臺) | B型銷售數(shù)量(臺) | 總利潤(元) |
5 | 3 | 950 |
3 | 4 | 900 |
(1)每臺A型空氣凈化器和B型空氣凈化器的銷售利潤分別是多少?
(2)該公司計劃一次購進兩種型號的空氣凈化器共80臺,其中B型空氣凈化器的進貨量不多于A型空氣凈化器的2倍,為使該公司銷售完這80臺空氣凈化器后的總利潤最大,請你設(shè)計相應(yīng)的進貨方案;
(3)已知A型空氣凈化器的凈化能力為200m3/小時,B型空氣凈化器的凈化能力為300m3/小時,某長方體室內(nèi)活動場地的總面積為200m2,室內(nèi)墻高3m,該場地負責人計劃購買5臺空氣凈化器每天花費30分鐘將室內(nèi)空氣凈化一新,若不考慮空氣對流等因素,至多要購買A型空氣凈化器多少臺?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與x軸交于A,B兩點,與y軸交于點C(0,﹣2),點A的坐標是(2,0),P為拋物線上的一個動點,過點P作PD⊥x軸于點D,交直線BC于點E,拋物線的對稱軸是直線x=﹣1.
(1)求拋物線的函數(shù)表達式;
(2)若點P在第二象限內(nèi),且PE=OD,求△PBE的面積.
(3)在(2)的條件下,若M為直線BC上一點,在x軸的上方,是否存在點M,使△BDM是以BD為腰的等腰三角形?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售10臺A型和20臺B型電腦的利潤為4000元,銷售20臺A型和10臺B型電腦的利潤為3500元.
(1)求每臺A型電腦和B型電腦的銷售利潤;
(2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,點M為二次函數(shù)y=﹣(x﹣b)2+4b+1圖象的頂點,直線y=mx+5分別交x軸正半軸,y軸于點A,B.
(1)判斷頂點M是否在直線y=4x+1上,并說明理由.
(2)如圖1,若二次函數(shù)圖象也經(jīng)過點A,B,且mx+5>﹣(x﹣b)2+4b+1,根據(jù)圖象,寫出x的取值范圍.
(3)如圖2,點A坐標為(5,0),點M在△AOB內(nèi),若點C(,y1),D(,y2)都在二次函數(shù)圖象上,試比較y1與y2的大小.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,是的直徑,點為上一點,于點,交于點,與交于點,點為的延長線上一點,且.
(1)求證:是的切線;
(2)求證:;
(3)若⊙O的半徑為,的長為,求.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是“明清影視城”的一扇圓弧形門,小紅到影視城游玩,她了解到這扇門的相關(guān)數(shù)據(jù):這扇圓弧形門所在的圓與水平地面是相切的,AB=CD=0.25m,BD=1.5m,且AB、CD與水平地面都是垂直的.根據(jù)以上數(shù)據(jù),請你幫小紅計算出這扇圓弧形門的最高點離地面的距離是( 。
A.2mB.2.5mC.2.4mD.2.1m
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,∠ACB=90°,OC=2OB,tan∠ABC=2,點B的坐標為(1,0).拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.
(1)求拋物線的解析式;
(2)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.
①求點P的坐標;
②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com