【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,對稱軸為直線x=2,且OA=OC,則下列結(jié)論: ①abc>0;②9a+3b+c<0;③c>﹣1;
④關(guān)于x的方程ax2+bx+c=0(a≠0)有一個根為﹣
其中正確的結(jié)論個數(shù)有(填序號)
【答案】①③④
【解析】解:由圖象開口向下,可知a<0, 與y軸的交點(diǎn)在x軸的下方,可知c<0,
又對稱軸方程為x=2,所以﹣ >0,所以b>0,
∴abc>0,故①正確;
由圖象可知當(dāng)x=3時,y>0,
∴9a+3b+c>0,故②錯誤;
由圖象可知OA<1,
∵OA=OC,
∴OC<1,即﹣c<1,
∴c>﹣1,故③正確;
假設(shè)方程的一個根為x=﹣ ,把x=﹣ 代入方程可得 ﹣ +c=0,
整理可得ac﹣b+1=0,
兩邊同時乘c可得ac2﹣bc+c=0,
即方程有一個根為x=﹣c,
由②可知﹣c=OA,而當(dāng)x=OA是方程的根,
∴x=﹣c是方程的根,即假設(shè)成立,故④正確;
綜上可知正確的結(jié)論有三個:①③④.
故答案為:①③④.
由二次函數(shù)圖象的開口方向、對稱軸及與y軸的交點(diǎn)可分別判斷出a、b、c的符號,從而可判斷①;由圖象可知當(dāng)x=3時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;把﹣ 代入方程整理可得ac2﹣bc+c=0,結(jié)合③可判斷④;從而可得出答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線l1:y=2x+1
(1)若將直線l1平移,使之經(jīng)過點(diǎn)(1,-5),求平移后直線的解析式;
(2)若直線l2:y=x+m與直線l1的交點(diǎn)在第二象限,求m的取值范圍;
(3)如圖,直線y=x+b與直線y=nx+2n(n≠0)的交點(diǎn)的橫坐標(biāo)為-5,求關(guān)于x的不等式組0<nx+2n<x+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了增強(qiáng)學(xué)生體質(zhì),全面實(shí)施“學(xué)生飲用奶”營養(yǎng)工程.某品牌牛奶供應(yīng)商提供了原味、草莓味、菠蘿味、香橙味、核桃味五種口味的牛奶提供學(xué)生飲用.浠馬中學(xué)為了了解學(xué)生對不同口味牛奶的喜好,對全校訂購牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查(每盒各種口味牛奶的體積相同),繪制了如圖兩張不完整的人數(shù)統(tǒng)計(jì)圖:
(1)本次被調(diào)查的學(xué)生有名;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖1,并計(jì)算出喜好“菠蘿味”牛奶的學(xué)生人數(shù)在扇形統(tǒng)計(jì)圖中所占圓心角的度數(shù);
(3)該校共有1200名學(xué)生訂購了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂購牛奶的學(xué)生配送一盒牛奶.要使學(xué)生每天都喝到自己喜好的口味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,草莓味要比原味多送多少盒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,過邊AB上一點(diǎn)N作AB的垂線交BC于點(diǎn)M.
(1)如圖1,若∠A=40°,求∠NMB的度數(shù).
(2)如圖2,若∠A=70°,求∠NMB的度數(shù).
(3)你可以再分別給出幾個∠A(∠A為銳角)的度數(shù),你發(fā)現(xiàn)規(guī)律了嗎?寫出當(dāng)∠A為銳角時,你猜想出的規(guī)律,并進(jìn)行證明.
(4)當(dāng)∠A為直角、鈍角時,是否還有(3)中的結(jié)論(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)1~5月份利潤的變化情況圖所示,以下說法與圖中反映的信息相符的是( )
A. 1~2月份利潤的增長快于2~3月份分利潤的增長
B. 1~4月份利潤的極差與1~5月份利潤的極差不同
C. 1~5月份利潤的的眾數(shù)是130萬元
D. 1~5月份利潤的中位數(shù)為120萬元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,每個小正方形的邊長都為1.
(1)圖中陰影正方形的面積是多少?它的邊長是多少?
(2)估計(jì)陰影正方形的邊長在哪兩個整數(shù)之間;
(3)把表示陰影正方形的邊長的點(diǎn)在數(shù)軸上表示出來.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程mx2+(2m﹣1)x+m=0有兩個不相等的實(shí)數(shù)根,則m的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com