【題目】如圖,已知AB是⊙O直徑,AC是⊙O弦,點(diǎn)D的中點(diǎn),弦DEAB,垂足為F,DEAC于點(diǎn)G

1)若過點(diǎn)E作⊙O的切線ME,交AC的延長線于點(diǎn)M(請(qǐng)補(bǔ)完整圖形),試問:MEMG是否成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由;

2)在滿足第(2)問的條件下,已知AF3FB,求AGGM的比.

【答案】1MEMG成立,見解析;(2AGGM的比為

【解析】

1)連接OE,并延長EO交⊙ON,連接BC,DN;由于ME是⊙O的切線,則∠MEG=N,而∠MGE=AGF,易證得∠AGF=B,即∠MGE=B,若證ME=MG,關(guān)鍵就是證得∠N=B;可從題干入手:點(diǎn)D是弧ABC的中點(diǎn),則弧AD=DBC=AE,所以弧DBE=AEC,即AC=DE,由此可證得∠N=B,即可得到∠MGE=MEG,根據(jù)等角對(duì)等邊即可得證.

2)根據(jù)相交弦定理可求得DF、EF的長,即可得到DE、AC的長,易證得△AFG∽△ACB,根據(jù)所得比例線段即可求得AGGC的長,再由(1)證得ME=MG,可用MG分別表示出MAMC的長,進(jìn)而根據(jù)切割線定理求出MG的長,有了AG、MG的值,那么它們的比例關(guān)系就不難求出.

解:(1MEMG成立,理由如下:

如圖,連接EO,并延長交⊙ON,連接BC,DN

∵AB⊙O的直徑,且AB⊥DE,

,

點(diǎn)D是弧的中點(diǎn),

AD=DBC,

AE=DBC,

AC=DBE,即ACDE,∠N∠B

∵M(jìn)E⊙O的切線,

∴∠MEG∠N∠B,

∵∠B90°∠GAF∠AGF∠MGE,

∴∠MEG∠MGE,故MEMG

2)由相交弦定理得:DF2AFFB4,即DF2;

DEAC2DF4;

∵∠FAG∠CAB,∠AFG∠ACB90°,

∴△AFG∽△ACB,

,即

解得AGGCACAG;

設(shè)MEMGx,則MCxMAx+,

由切割線定理得:ME2MCMA,即x2=(x)(x+),

解得MGx;

∴AGMG103,即AGGM的比為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了慶祝建國七十周年,決定舉辦一臺(tái)文藝晚會(huì),為了了解學(xué)生最喜愛的節(jié)目形式,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,規(guī)定每人從歌曲,舞蹈,小品,相聲其它五個(gè)選項(xiàng)中選擇一個(gè),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖中信息,解答下列題:

最喜愛的節(jié)目

人數(shù)

歌曲

15

舞蹈

a

小品

12

相聲

10

其它

b

1)在此次調(diào)查中,該校一共調(diào)查了   名學(xué)生;

2a   ;b   ;

3)在扇形計(jì)圖中,計(jì)算歌曲所在扇形的圓心角的度數(shù);

4)若該校共有1200名學(xué)生,請(qǐng)你估計(jì)最喜愛相聲的學(xué)生的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖12分別是某款籃球架的實(shí)物圖與示意圖,ABBC于點(diǎn)B,底座BC1.3米,底座BC與支架AC所成的角∠ACB60°,點(diǎn)H在支架AF上,籃板底部支架EHBCEFEH于點(diǎn)E,已知AH米,HF米,HE1米.

1)求籃板底部支架HE與支架AF所成的∠FHE的度數(shù).

2)求籃板底部點(diǎn)E到地面的距離,(精確到0.01米)(參考數(shù)據(jù):≈1.41≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于的一元二次方程有兩個(gè)實(shí)數(shù)根,且其中一個(gè)根為另一個(gè)根的2倍,則稱這樣的方程為倍根方程,以下關(guān)于倍根方程的說法,正確的是(

①方程是倍根方程;②若是倍根方程,則③若點(diǎn)在雙曲線的圖像上,則關(guān)于的方程是倍根方程;

A. B. ①②C. ①③D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在星期一的第八節(jié)課,我校體育老師隨機(jī)抽取了九年級(jí)的總分學(xué)生進(jìn)行體育中考的模擬測(cè)試,并對(duì)成績進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,按得分劃分成A、B、C、D、E、F六個(gè)等級(jí),并繪制成如下兩幅不完整的統(tǒng)計(jì)圖表.

 等級(jí)

 得分x(分)

 頻數(shù)(人)

 A

 95<x≤100

 4

 B

 90<x≤95

 m

 C

 85<x≤90

 n

 D

 80<x≤85

 24

 E

 75<x≤80

 8

 F

 70<x≤75

 4

請(qǐng)你根據(jù)圖表中的信息完成下列問題:

1)本次抽樣調(diào)查的樣本容量是   .其中m=   ,n=   

2)扇形統(tǒng)計(jì)圖中,求E等級(jí)對(duì)應(yīng)扇形的圓心角α的度數(shù);

3)我校九年級(jí)共有700名學(xué)生,估計(jì)體育測(cè)試成績?cè)?/span>A、B兩個(gè)等級(jí)的人數(shù)共有多少人?

4)我校決定從本次抽取的A等級(jí)學(xué)生(記為甲、乙、丙、丁)中,隨機(jī)選擇2名成為學(xué)校代表參加全市體能競(jìng)賽,請(qǐng)你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是長方形,點(diǎn)A、C、D的坐標(biāo)分別為A(90)、C(0,4),D(5,0),點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度沿OCBA運(yùn)動(dòng),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.則當(dāng)t____秒時(shí),△ODP是腰長為5的等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB6,AD8,點(diǎn)E是邊AD上一點(diǎn),EMBCAB于點(diǎn)M,點(diǎn)N在射線MB上,且AEAMAN的比例中項(xiàng).

1)如圖1,求證:∠ANE=∠DCE

2)如圖2,當(dāng)點(diǎn)N在線段MB之間,聯(lián)結(jié)AC,且ACNE互相垂直,求MN的長;

3)連接AC,如果AEC與以點(diǎn)EM、N為頂點(diǎn)所組成的三角形相似,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為圓心,2為半徑畫圓,P是⊙O上一動(dòng)點(diǎn)且在第一象限內(nèi),過點(diǎn)P作⊙O的切線,與x、y軸分別交于點(diǎn)A、B.

(1)求證:△OBP與△OPA相似;

(2)當(dāng)點(diǎn)PAB中點(diǎn)時(shí),求出P點(diǎn)坐標(biāo);

(3)在⊙O上是否存在一點(diǎn)Q,使得以Q,O,A、P為頂點(diǎn)的四邊形是平行四邊形.若存在,試求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案