【題目】(本題14分)如圖,拋物線y=x2+x+c與x軸的負半軸交于點A,與y軸交于點B,連結AB,點C(6, )在拋物線上,直線AC與y軸交于點D.
(1)求c的值及直線AC的函數表達式;
(2)點P在x軸正半軸上,點Q在y軸正半軸上,連結PQ與直線AC交于點M,連結MO并延長交AB于點N,若M為PQ的中點.
①求證:△APM∽△AON;
②設點M的橫坐標為m,求AN的長(用含m的代數式表示).
【答案】(1)c=﹣3, ;(2)①答案見解析,②
【解析】試題分析:(1)把C點坐標代入拋物線解析式可求得c的值,令y=0可求得A點坐標,利用待定系數法可求得直線AC的函數表達式;
(2)①在Rt△AOB和Rt△AOD中可求得∠OAB=∠OAD,在Rt△OPQ中可求得MP=MO,可求得∠MPO=∠MOP=∠AON,則可證得△APM∽△AON;
②過M作ME⊥x軸于點E,用m可表示出AE和AP,進一步可表示出AM,利用△APM∽△AON可表示出AN.
(1)把C點坐標代入拋物線解析式可得,解得c=﹣3,∴拋物線解析式為,令y=0可得,解得x=﹣4或x=3,∴A(﹣4,0),設直線AC的函數表達式為y=kx+b(k≠0),把A、C坐標代入可得: ,解得: ,∴直線AC的函數表達式為;
(2)①∵在Rt△AOB中,tan∠OAB= =,在RtAOD中,tan∠OAD==,∴∠OAB=∠OAD,∵在Rt△POQ中,M為PQ的中點,∴OM=MP,∴∠MOP=∠MPO,且∠MOP=∠AON,∴∠APM=∠AON,∴△APM∽△AON;
②如圖,過點M作ME⊥x軸于點E,則OE=EP,∵點M的橫坐標為m,∴AE=m+4,AP=2m+4,∵tan∠OAD=,∴cos∠EAM=cos∠OAD=,∴=,∴AM=AE=,∵△APM∽△AON,∴,即,∴AN=.
科目:初中數學 來源: 題型:
【題目】已知:如圖,∠1=∠2,∠A=∠F,試說明∠C=∠D.
解:∵∠1=∠2 (已知 )
∠1=∠ ( )
∴∠2=∠ (等量代換)
∴BD∥ ( )
∴∠ABD=∠ (兩直線平行,同位角相等)
∵∠A=∠F ( 已知 )
∴DF∥ ( )
∴∠ABD=∠ (兩直線平行,內錯角相等)
∴∠C=∠D ( ).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題6分)甲、乙兩人進行摸牌游戲.現有三張形狀大小完全相同的牌,正面分別標有數字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機抽取一張牌,記錄數字后放回洗勻,乙再隨機抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數字的概率;
(2)若兩人抽取的數字和為2的倍數,則甲獲勝;若抽取的數字和為5的倍數,則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一個粒子在第一象限運動,在第一秒內,它從原點運動到(0,1),接著它按如圖所示的橫軸、縱軸的平行方向來回運動,(即(0,0)→(0,1)→(1,1)→(1,0)→ (2,0)→…),且每秒移動一個單位,那么粒子運動到點(3,0)時經過了________秒,粒子運動60秒后的坐標為_________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,O為AC中點,EF過O點且EF⊥AC分別交DC于F,交AB于點E,點G是AE中點且∠AOG=30°,則下列結論正確的個數為( )
(1)DC=3OG;(2)OG= BC;(3)△OGE是等邊三角形;(4).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,CD//AB,BD平分∠ABC,CE平分∠DCF,∠ACE=90°
(1)請問BD和CE是否平行?請你說明理由;
(2)AC和BD有何位置關系?請你說明判斷的理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關于拋物線的對稱軸對稱,已知一次函數y=kx+b的圖象經過該二次函數圖象上的點A(﹣1,0)及點B.
(1)求二次函數與一次函數的解析式;
(2)根據圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com