【題目】如圖,在正方形中,點E是對角線上一點,連接.過點E作交的延長線于點F.若,,則正方形的面積為______.
【答案】16
【解析】
由∠EHC=∠BHF,∠CEH=∠FBH=90°可判定△ECH∽△BFH,從而得到∠ECH=∠BFH;作輔助線可證明四邊形ENBM是正方形,根據(jù)正方形的性質(zhì)得EM=EN,由角角邊可證明△ENC≌△EMF,得CN=FM;因,可求MB的長度,從而求得CN和BC的長,可求出正方形ABCD的面積.
解:過點E作EN⊥BC,EM⊥AB,分別交BC、AB于N、M兩點,
且EF與BC相交于點H.
∵EF⊥CE,∠ABC=90°,∠ABC+∠HBF=180°,
∴∠CEH=∠FBH=90°,
又∵∠EHC=∠BHF,
∴△ECH∽△BFH(AA),
∴∠ECH=∠BFH,
∵EN⊥BC,EM⊥AB,四邊形ABCD是正方形,
∴四邊形ENBM是正方形,
∴EM=EN,∠ENC=∠EMF=90°,
在△ENC和△EMF中
∴△ENC≌△EMF(AAS)
∴CN=FM,
又∵在正方形ENBM中,
∴MB=BN=1,
∵BF=2
∴MF=CN=1+2=3
∴BC=4
∴正方形ABCD的面積為16
故答案為:16.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點C,AC平分∠DAB.
(1)求證:AD⊥CD;
(2)若AD=2,AC=,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在直角坐標系中,已知、、三點,其中、、滿足關(guān)系式, ≤.
(1)=_______; =________; =_______.
(2)如果點是第二象限內(nèi)的一個動點,坐標為.將四邊形的面積用表示,請你寫出關(guān)于的函數(shù)表達式,并寫出自變量的取值范圍.
(3)在(2)的條件下,是否存在點,使得四邊形的面積與的面積相等?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為10的菱形ABCD中,對角線BD=16,對角線AC,BD相交于點G,點O是直線BD上的動點,OE⊥AB于E,OF⊥AD于F.
(1)求對角線AC的長及菱形ABCD的面積.
(2)如圖①,當點O在對角線BD上運動時,OE+OF的值是否發(fā)生變化?請說明理由.
(3)如圖②,當點O在對角線BD的延長線上時,OE+OF的值是否發(fā)生變化?若不變,請說明理由;若變化,請?zhí)骄?/span>OE,OF之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】食品安全關(guān)乎民生,食品中添加過量的添加劑對人體有害,但適量的添加劑對人體無害且有利于食品的儲存.某飲料廠為了解A、B兩種飲料添加劑的添加情況,隨機抽檢了A種30瓶,B種70瓶,檢測發(fā)現(xiàn),A種每瓶比B種每瓶少1克添加劑,兩種共加入了添加劑270克,求A、B兩種飲料每瓶各加入添加劑多少克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,直線l:y=x+1交y軸于點A1,在x軸正方向上取點B1,使OB1=OA1;過點B1作A2B1⊥x軸,交l于點A2,在x軸正方向上取點B2,使B1B2=B1A2;過點B2作A3B2⊥x軸,交l于點A3,…記△OA1B1面積為S1,△B1A2B2面積為S2,△B2A3B3面積為S3,…,則S8等于( 。
A.28B.213C.216D.218
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,E為BC上一點,BE=2CE,連接DE,F為DE中點,以DF為直角邊作等腰Rt△DFG,連接BG,將△DFG繞點D順時針旋轉(zhuǎn)得△DF′G′,G′恰好落在BG的延長線上,連接F′G,若BG=2,則S△GF′G′=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為方便市民通行,某廣場計劃對坡角為30°,坡長為60 米的斜坡AB進行改造,在斜坡中點D 處挖去部分坡體(陰影表示),修建一個平行于水平線CA 的平臺DE 和一條新的斜坡BE.
(1)若修建的斜坡BE 的坡角為36°,則平臺DE的長約為多少米?
(2)在距離坡角A點27米遠的G處是商場主樓,小明在D點測得主樓頂部H 的仰角為30°,那么主樓GH高約為多少米?
(結(jié)果取整數(shù),參考數(shù)據(jù):sin 36°=0.6,cos 36°=0.8,tan 36°=0.7,=1.7)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com