【題目】如圖,在ABC中,ADBC邊上的高,tanBcosDAC.

1求證:ACBD;

2sin CBC12,求ABC的面積.

【答案】1)證明見解析;(2ABC的面積為48.

【解析】(1)∵ADBC上的高,ADBC

∴∠ADB=90°ADC=90°…………………………………………1

Rt△ABDRt△ADC中,

=, =…………………………………………3

又已知

=AC=BD………………………………4

(2)RtADC中, ,故可設(shè)AD=12k,AC=13k

CD==5k………………………………5

BC=BD+CDAC=BD,

BC=13k+5k=18k ………………………………6

由已知BC=12, 18k=12k=………………………………7

AD=12k=12=8……………………………8

1)在直角三角形中,表示,根據(jù)它們相等,即可得出結(jié)論

2)利用和勾股定理表示出線段長,根據(jù),求出

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把RtABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點A,B的坐標(biāo)分別為(1,0),(4,0),將△ABC沿x軸向右平移,當(dāng)點C落在直線y=2x-6上時,線段BC掃過的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAC=90°,ADBC,垂足為D,則下面的結(jié)論中正確的個數(shù)為( 。

ABAC互相垂直;

ADAC互相垂直;

③點CAB的垂線段是線段AB;

④線段AB的長度是點BAC的距離;

⑤線段ABB點到AC的距離.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,點DBC上一點,且AD=DC,過A,BD三點作⊙O,AE⊙O的直徑,連結(jié)DE

1)求證:AC⊙O的切線;

2)若sinC=,AC=6,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一項工程,甲隊單獨做需40天完成,若乙隊先做30天后,甲、乙兩隊一起合做20天恰好完成任務(wù),請問:

1)乙隊單獨做需要多少天才能完成任務(wù)?

2)現(xiàn)將該工程分成兩部分,甲隊做其中一部分工程用了x天,乙隊做另一部分工程用了y天,若x; y都是正整數(shù),且甲隊做的時間不到15天,乙隊做的時間不到70天,那么兩隊實際各做了多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 A-40),B02),C0-3),D2,0

1)在圖 1 中,畫出四邊形 ABDC,直接寫出四邊形 ABDC 的面積是 .

2)點 E 是直線 AB CD 的交點,求△ACE 的面積.

3)點 P 的坐標(biāo)為(0,p),△PAB 的面積大于△PCD 的面積,求 p 的取值范圍.

1 備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點AC,D,ERtMON的邊上,∠MON=90°,AEABAE=ABBCCDBC=CD,BHON于點H,DFON于點F,OM=12,OE=6,BH=3,DF=4,FN=8,圖中陰影部分的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個批發(fā)商銷售成本為20/千克的某產(chǎn)品,根據(jù)物價部門規(guī)定:該產(chǎn)品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表:

售價x(元/千克)


50

60

70

80


銷售量y(千克)


100

90

80

70


1)求yx的函數(shù)關(guān)系式;

2)該批發(fā)商若想獲得4000元的利潤,應(yīng)將售價定為多少元?

3)該產(chǎn)品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,弦BC=2cm,F(xiàn)是弦BC的中點,ABC=60°.若動點E以2cm/s的速度從A點出發(fā)沿著ABA方向運動,設(shè)運動時間為t(s)(0≤t<3),連接EF,當(dāng)t為_____s時,BEF是直角三角形.

查看答案和解析>>

同步練習(xí)冊答案