【題目】如圖,在矩形ABCD中,對角線AC與BD相交于點O,過點A作AE∥BD,過點D作ED∥AC,兩線相交于點E.

(1)求證:四邊形AODE是菱形;
(2)連接BE,交AC于點F.若BE⊥ED于點E,求∠AOD的度數(shù).

【答案】
(1)證明:∵AE∥BD,ED∥AC,

∴四邊形AODE是平行四邊形,

∵四邊形ABCD是矩形,

∴OA=OC= AC,OB=OD= BD,AC=BD,

∴OA=OC=OD,

∴四邊形AODE是菱形


(2)解:連接OE,如圖所示:

由(1)得:四邊形AODE是菱形,

∴AE=OB=OA,

∵AE∥BD,

∴四邊形AEOB是平行四邊形,

∵BE⊥ED,ED∥AC,

∴BE⊥AC,

∴四邊形AEOB是菱形,

∴AE=AB=OB,

∴AB=OB=OA,

∴△AOB是等邊三角形,

∴∠AOB=60°,

∴∠AOD=180°﹣60°=120°.


【解析】(1)先證明四邊形AODE是平行四邊形,再由矩形的性質(zhì)得出OA=OC=OD,即可得出四邊形AODE是菱形;(2)連接OE,由菱形的性質(zhì)得出AE=OB=OA,證明四邊形AEOB是菱形,得出AB=OB=OA,證出△AOB是等邊三角形,得出∠AOB=60°,再由平角的定義即可得出結(jié)果

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某市公交公司為應對春運期間的人流高峰,計劃購買A、B兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,

(1)試問該公交公司計劃購買A型和B型公交車每輛各需多少萬元?

(2)若該公司預計在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費用W最少?最少總費用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EABCD的邊CD的中點,延長AEBC的延長線于點F

1)求證:△ADE≌△FCE

2)若∠BAF=90°,BC=10,EF=6,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①、、④四個圖形都是平面圖形,觀察圖②和表中對應數(shù)值,探究計數(shù)的方法并解答下面的問題.

(1)數(shù)一數(shù)每個圖各有多少頂點、多少條邊、這些邊圍成多少區(qū)域,將結(jié)果填入下表:

圖形

頂點數(shù)(V)

邊數(shù)(E)

區(qū)域數(shù)(F)

(2)根據(jù)表中的數(shù)值,寫出平面圖的頂點數(shù)、邊數(shù)、區(qū)域數(shù)之間的關系;

(3)如果一個平面圖形有20個頂點和11個區(qū)域,求這個平面圖形的邊數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是直線AB上任一點,射線OD和射線OE分別平分AOCBOC

(1)填空:與AOE互補的角是 ;

(2)若AOD=36°,求DOE的度數(shù);

(3)當AOD=x°時,請直接寫出DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB//DE,AC//DF,AC=DF,下列條件中不能判斷△ABC≌△DEF的是( )

A. AB=DE B. EF=BC C. ∠B=∠E D. EF∥BC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖某商場為了吸引顧客,設立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定:每購買500元商品,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,如果轉(zhuǎn)盤停止后,指針上對準500、20、100、50、10的區(qū)域,顧客就可以分別獲得500元、200元、100元、50元、10元的購物券一張。(轉(zhuǎn)盤等分成20)

(1)小華購物450,他獲得購物券的概率是多少?

(2)小麗購物600,那么她獲得100元以上(包括100)券的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,現(xiàn)有一張邊長為4的正方形紙片,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PGDCH,折痕為EF,連接BP、BH

1)求證:∠APB=∠BPH;

2)當點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結(jié)論;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖AB=AC,∠BAC=120°,AB的垂直平分線交BC于點D,那么DAC的度數(shù)為( 。

A. 90° B. 80° C. 70° D. 60°

查看答案和解析>>

同步練習冊答案