【題目】(12分)某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利44元,為了擴(kuò)大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場平均每天可多售出5件.

(1)若商場平均每天要盈利1600元,每件襯衫應(yīng)降價(jià)多少元?

(2)若該商場要每天盈利最大,每件襯衫應(yīng)降價(jià)多少元?盈利最大是多少元?

【答案】(1)36元;(2)20元;2880元

【解析】試題分析:(1每件襯衫降價(jià)x,利用每件利潤銷售件數(shù)=總利潤列方程.

2)利用每件利潤銷售件數(shù)=總利潤列關(guān)系式,得到一元二次函數(shù)求最值.

試題解析:

1)解:設(shè)每件襯衫降價(jià)x元,可使每天盈利1600元,

根據(jù)題意可列方程:(44-x)(20+5x)=1600 ,

整理,得 x-40x+144=0 (x-36)(x-4)=0,

解得x=36x=4 .

因?yàn)楸M快減少庫存,取x=36 .

答:每件襯衫降價(jià)36元更利于銷售.

2)解:設(shè)每件襯衫降價(jià)a元,可使每天盈利y元,

y=(44-a)(20+5a)

=-5 a+200a+880

=-5a-20+2880,

-50 所以當(dāng)a=20時(shí), y有最大值2880.

所以,當(dāng)每件襯衫降價(jià)20元時(shí)盈利最大,最大盈利是2880元

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四張撲克牌方塊2、黑桃4、黑桃5、梅花5的牌面如圖l,將撲克牌洗勻后,如圖2背面朝上放置在桌面上.小亮和小明設(shè)計(jì)的游戲規(guī)則是兩人同時(shí)抽取一張撲克牌,兩張牌面數(shù)字之和為奇數(shù)時(shí)小亮獲勝;否則小明獲勝.請問這個游戲規(guī)則公平嗎?并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小紅用一張長方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB8cm,BC10cm.當(dāng)小紅折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的頂點(diǎn)為D.

1)求點(diǎn)D的坐標(biāo)(用含m的代數(shù)式表示);

2)若該拋物線經(jīng)過點(diǎn)A1m),求m的值;

3)在(2)的條件下,拋物線與x軸是否有交點(diǎn),若有,求出交點(diǎn)坐標(biāo),若沒有,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(6分)如圖:在平面直角坐標(biāo)系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度;已知△ABC.

(1)作出△ABC以O(shè)為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°的△A1B1C1,(只畫出圖形).

(2)作出△ABC關(guān)于原點(diǎn)O成中心對稱的△A2B2C2,(只畫出圖形),寫出B2和C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A ,D,B,E在同一條直線上,且AD = BE, AC = DF,補(bǔ)充下列其中一個條件后,不一定能得到ABCDEF 的是(

A.BC = EFB.AC//DFC.C = FD.BAC = EDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店張阿姨以每斤2元的價(jià)格購進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.

1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);

2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中, 為邊的中點(diǎn). 上一點(diǎn),⊙相切于點(diǎn),且與分別相交于點(diǎn).連接于點(diǎn)

)求證:

)已知, .當(dāng)是⊙的直徑時(shí),求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形中,,對角線交于點(diǎn)平分

1)求證:四邊形是菱形;

2)如圖2,在(1)的條件下,過點(diǎn)的延長線于點(diǎn),連接.若,求的長.

查看答案和解析>>

同步練習(xí)冊答案