【題目】如圖,在六邊形ABCDEF中,∠A+∠F+∠E+∠D =,∠ABC的平分線與∠BCD的平分線交于點P,則∠P度數(shù)為( )
A.B.C.D.
【答案】A
【解析】
先根據(jù)多邊形的內(nèi)角和公式求出六邊形的內(nèi)角和,再用α表示出∠ABC+∠BCD,進一步根據(jù)PB、PC分別平分∠ABC與∠BCD即可表示出∠PBC+∠PCB,然后在△PBC中利用三角形的內(nèi)角和定理即可得出答案.
解:六邊形內(nèi)角和=(6-2)×180°=720°,
∴∠ABC+∠BCD =720°-(∠A+∠F+∠E+∠D )=720°-,
∵ ∠ABC的平分線與∠BCD的平分線交于點P,
∴∠PBC+∠PCB=(720°-α)=360°-α,
∴∠P=180°-(∠PBC+∠PCB)=180°-(360°-α)=α-180°,
故答案為:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,x軸表示一條東西方向的道路,y軸表示一條南北方向的道路,小麗和小明分別從十字路口O點處同時出發(fā),小麗沿著x軸以4千米時的速度由西向東前進,小明沿著y軸以5千米/時的速度由南向北前進.有一顆百年古樹位于圖中的P點處,古樹與x軸、y軸的距離分別是3千米和2千米.
問:(1)離開路口后經(jīng)過多少時間,兩人與這棵古樹的距離恰好相等?
(2)離開路口經(jīng)過多少時間,兩人與這顆古樹所處的位置恰好在一條直線上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點P是∠AOB內(nèi)部的一點,按要求完成下列各小題.
(1)分別畫出點P關于OA、OB的對稱點分別為P1、P2,連接P1P2, 分別交OA、OB于點M、N兩點.
(2)連接PM,PN,若P1P2=5cm,則△PMN的周長= cm;
(3)畫射線OP1與OP2,若∠AOB=55°,則∠P1OP2= °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC 中,∠ABC=63°,點 D,E 分別是△ABC 的邊BC,AC 上的點,且 AB=AD=DE=EC,則∠C 的度數(shù)是( )
A.21°B.19°C.18°D.17°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D是BC的垂直平分線DH上一點,DF⊥AB于F,DE⊥AC交AC的延長線于E,且BF=CE.
(1)求證:AD平分∠BAC;
(2)若∠BAC=80°,求∠DCB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店購進一批甲、乙兩種款型時尚T恤衫,甲種款型共用了7800元,乙種款型共用了6400元,甲種款型的件數(shù)是乙種款型件數(shù)的1.5倍,甲種款型每件的進價比乙種款型每件的進價少30元.
(1)甲、乙兩種款型的T恤衫各購進多少件?
(2)商店進價提高60%標價銷售,銷售一段時間后,甲款型全部售完,乙款型剩余一半,商店決定對乙款型按標價的五折降價銷售,很快全部售完,求售完 這批T恤衫商店共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在ABCD中,對角線AC與BD相交于點O,△AOB是等邊三角形,AB=4,求ABCD的面積.
(2)如圖2,在△ABC中,∠B=90°,∠A=30°,D是邊AB上一點,∠BDC=45°,AD=4,求BC的長(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學活動課上,小明提出這樣一個問題:∠B=∠C=90°,E是BC的中點,DE平分∠ADC,∠CDE=55°.如圖,則∠EAB的度數(shù)為_________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com