【題目】如圖,已知:∠MON=30°,點(diǎn)A 、A 、A…在射線ON上,點(diǎn)B、B、B…在射線OM上,△ABA、△ABA、△ABA …均為等邊三角形,若OA=1,則△A BA 的邊長(zhǎng)為____
【答案】32
【解析】
根據(jù)等腰三角形的性質(zhì)以及平行線的性質(zhì)得出AB∥AB∥AB,以及AB=2BA,得出AB=4BA=4,AB=8BA=8,AB=16BA…進(jìn)而得出答案.
∵△ABA是等邊三角形,
∴AB=AB,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°120°30°=30°,
又∵∠3=60°,
∴∠5=180°60°30°=90°,
∵∠MON=∠1=30°,
∴OA=AB=1,
∴AB=1,
∵△ABA、△BA是等邊三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴AB∥AB∥AB,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴AB=2BA, AB=4BA,
∴AB=4BA=4,
AB=8BA=8,
AB=16BA=16,
以此類推:A B=32 BA=32.
故答案為:32
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上線段AB=2(單位長(zhǎng)度),CD=4(單位長(zhǎng)度),點(diǎn)A在數(shù)軸上表示的數(shù)是﹣8,點(diǎn)C 在數(shù)軸上表示的數(shù)是10.若線段AB以6個(gè)單位長(zhǎng)度/秒的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD以2個(gè)單位長(zhǎng)度/秒的速度也向右勻速運(yùn)動(dòng).
(1)運(yùn)動(dòng)t秒后,點(diǎn)B表示的數(shù)是 ;點(diǎn)C表示的數(shù)是 .(用含有t的代數(shù)式表示)
(2)求運(yùn)動(dòng)多少秒后,BC=4(單位長(zhǎng)度);
(3)P是線段AB上一點(diǎn),當(dāng)B點(diǎn)運(yùn)動(dòng)到線段CD上時(shí),是否存在關(guān)系式,若存在,求線段PD的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測(cè)得AC、BC與AB的夾角分別為45°與68°,若點(diǎn)C到地面的距離CD為28cm,坐墊中軸E處與點(diǎn)B的距離BE為4cm,求點(diǎn)E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形ABCD中,AB∥CD,∠D=90°,BE平分∠ABC,交CD于點(diǎn)E,F(xiàn)是AB的中點(diǎn),聯(lián)結(jié)AE、EF,且AE⊥BE.
求證:(1)四邊形BCEF是菱形;
(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)P從A點(diǎn)出發(fā),按A→B→C的方向在AB和BC上移動(dòng).記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)大致圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若線段上的一個(gè)點(diǎn)把這條線段分成1:2的兩條線段,則稱這個(gè)點(diǎn)是這條線段的三等分點(diǎn).如圖1,點(diǎn)C在線段AB上,且AC:CB=1:2,則點(diǎn)C是線段AB的一個(gè)三等分點(diǎn),顯然,一條線段的三等分點(diǎn)有兩個(gè).
(1)已知:如圖2,DE=15cm,點(diǎn)P是DE的三等分點(diǎn),求DP的長(zhǎng).
(2)已知,線段AB=15cm,如圖3,點(diǎn)P從點(diǎn)A出發(fā)以每秒1cm的速度在射線AB上向點(diǎn)B方向運(yùn)動(dòng);點(diǎn)Q從點(diǎn)B出發(fā),先向點(diǎn)A方向運(yùn)動(dòng),當(dāng)與點(diǎn)P重合后立馬改變方向與點(diǎn)P同向而行且速度始終為每秒2cm,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),且當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),求t的值.
②若點(diǎn)P點(diǎn)Q同時(shí)出發(fā),且當(dāng)點(diǎn)P是線段AQ的三等分點(diǎn)時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:是最大的負(fù)整數(shù),且、b、c滿足(c﹣5)2+|+b|=0,請(qǐng)回答問(wèn)題.
(1)請(qǐng)直接寫出、b、c的值:= ,b= ,c= .
(2)、b、c所對(duì)應(yīng)的點(diǎn)分別為A、B、C,點(diǎn)P為一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x,點(diǎn)P在0到1之間運(yùn)動(dòng)時(shí)(即0 ≤ x ≤ 1時(shí)),請(qǐng)化簡(jiǎn)式子:|x+1|﹣|x﹣1|+2|x-5|(請(qǐng)寫出化簡(jiǎn)過(guò)程).
(3)在(1)(2)的條件下,點(diǎn)A、B、C開始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒2個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒3個(gè)單位長(zhǎng)度和8個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè)t秒鐘過(guò)后,若點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離表示為AB.請(qǐng)問(wèn):BC﹣AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小聰從家里跑步去體育場(chǎng),在那里鍛煉了一會(huì)兒后,又走到文具店去買筆,然后走回家,如圖是小聰離家的距離(單位:)與時(shí)間(單位:)的圖象。根據(jù)圖象回答下列問(wèn)題:
(1)體育場(chǎng)離小聰家______;
(2)小聰在體育場(chǎng)鍛煉了______;
(3)小聰從體育場(chǎng)走到文具店的平均速度是______;
(4)小聰在返回時(shí),何時(shí)離家的距離是?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖,則下列結(jié)論中正確的有( 。
①a+b+c>0;②a-b+c<0;③b>0;④b=2a;⑤abc<0.
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
【答案】B
【解析】試題解析:當(dāng)x=1時(shí),y=a+b+c,頂點(diǎn)坐標(biāo)(1,a+b+c),
由圖象可知,頂點(diǎn)坐標(biāo)在第一象限,
∴a+b+c>0,故①正確;
當(dāng)x=-1時(shí),y=a-b+c,
由圖象可知,當(dāng)x=-1時(shí),所對(duì)應(yīng)的點(diǎn)在第四象限,
∴y=a-b+c<0,故②正確;
∵圖象開口向下,
∴a<0,
∵x=- =1,
∴b=-2a,故④錯(cuò)誤;
∴b>0,故③正確;
∵圖象與y軸的交點(diǎn)在y軸的上半軸,
∴c>0,
∴abc<0,故⑤正確;
∴正確的有4個(gè).
故選B.
【題型】單選題
【結(jié)束】
10
【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點(diǎn)D,交AB于點(diǎn)H,AC的垂直平分線交BC于點(diǎn)E,交AC于點(diǎn)G,連接AD,AE,則下列結(jié)論錯(cuò)誤的是( )
A. B. AD,AE將∠BAC三等分
C. △ABE≌△ACD D. S△ADH=S△CEG
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com