【題目】如圖,在一塊斜邊長30cm的直角三角形木板(Rt△ACB)上截取一個(gè)正方形CDEF,點(diǎn)D在邊BC上,點(diǎn)E在斜邊AB上,點(diǎn)F在邊AC上,若AFAC13,則這塊木板截取正方形CDEF后,剩余部分的面積為( )

A. 100cm2B. 150cm2C. 170cm2D. 200cm2

【答案】A

【解析】

設(shè)AFx,根據(jù)正方形的性質(zhì)用x表示出EF、CF,證明△AEF∽△ABC,根據(jù)相似三角形的性質(zhì)求出BC,根據(jù)勾股定理列式求出x,根據(jù)三角形的面積公式、正方形的面積公式計(jì)算即可.

設(shè)AFx,則AC3x,FC=2x

四邊形CDEF為正方形,

∴EFCF2x,EF∥BC

∴△AEF∽△ABC,

,

∴BC6x,

Rt△ABC中,AB2AC2+BC2,即302(3x)2+(6x)2,

解得,x2,

∴AC6,BC12

剩余部分的面積=×12×64×4100(cm2)

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一種火爆的網(wǎng)紅電子產(chǎn)品,每件產(chǎn)品成本元、工廠將該產(chǎn)品進(jìn)行網(wǎng)絡(luò)批發(fā),批發(fā)單價(jià)(元)與一次性批發(fā)量(件)(為正整數(shù))之間滿足如圖所示的函數(shù)關(guān)系.

直接寫出之間所滿足的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

若一次性批發(fā)量不超過件,當(dāng)批發(fā)量為多少件時(shí),工廠獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高農(nóng)田利用效益,某地由每年種植雙季稻改為先養(yǎng)殖小龍蝦再種植一季水稻的“蝦稻”輪作模式.某農(nóng)戶有農(nóng)田20畝,去年開始實(shí)施“蝦稻”輪作,去年出售小龍蝦每千克獲得的利潤為32(利潤=售價(jià)﹣成本).由于開發(fā)成本下降和市場供求關(guān)系變化,今年每千克小龍蝦的養(yǎng)殖成本下降25%,售價(jià)下降10%,出售小龍蝦每千克獲得利潤為30元.

(1)求去年每千克小龍蝦的養(yǎng)殖成本與售價(jià);

(2)該農(nóng)戶今年每畝農(nóng)田收獲小龍蝦100千克,若今年的水稻種植成本為600/畝,稻谷售價(jià)為25/千克,該農(nóng)戶估計(jì)今年可獲得“蝦稻”輪作收入不少于8萬元,則稻谷的畝產(chǎn)量至少會(huì)達(dá)到多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB60°,OC是∠AOB的平分線,點(diǎn)DOC上一點(diǎn),過D作直線DEOA,垂足為點(diǎn)E,且直線DEOB于點(diǎn)F,如圖所示.若DE2,則DF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下四個(gè)命題:用換元法解分式方程時(shí),如果設(shè),那么可以將原方程化為關(guān)于的整式方程;如果半徑為的圓的內(nèi)接正五邊形的邊長為,那么有一個(gè)圓錐,與底面圓直徑是且體積為的圓柱等高,如果這個(gè)圓錐的側(cè)面展開圖是半圓,那么它的母線長為;④二次函數(shù),自變量的兩個(gè)值對(duì)應(yīng)的函數(shù)值分別為,若,則.其中正確的命題的個(gè)數(shù)為( 。

A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)PO外,PCO的切線,C為切點(diǎn),直線POO相交于點(diǎn)A、B.

1)若∠A30°,求證:PA3PB;

2)小明發(fā)現(xiàn),∠A在一定范圍內(nèi)變化時(shí),始終有∠BCP90°﹣∠P)成立.請(qǐng)你寫出推理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正比例函數(shù)y1k1x的圖象與反比例函數(shù)y2x0)的圖象相交于點(diǎn)A,2),點(diǎn)B是反比例函數(shù)圖象上一點(diǎn),它的橫坐標(biāo)是3,連接OB,AB,則△AOB的面積是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=a(x+2)2+m過原點(diǎn),與拋物線y2=(x﹣3)2+n交于點(diǎn)A(1,3),過點(diǎn)Ax軸的平行線,分別交兩條拋物線于點(diǎn)B,C.下列結(jié)論:兩條拋物線的對(duì)稱軸距離為5;②x=0時(shí),y2=5;③當(dāng)x>3時(shí),y1﹣y2>0;④y軸是線段BC的中垂線.正確結(jié)論是________(填寫正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】性質(zhì)探究

如圖①,在等腰三角形中,,則底邊與腰的長度之比為________.

理解運(yùn)用

若頂角為120°的等腰三角形的周長為,則它的面積為________;

⑵如圖②,在四邊形中,

①求證:;

②在邊上分別取中點(diǎn),連接.若,,直接寫出線段的長.

類比拓展

頂角為的等腰三角形的底邊與一腰的長度之比為________(用含的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案