【題目】有一塊面積為100cm2的正方形紙片.

1)該正方形紙片的邊長為   cm(直接寫出結(jié)果);

2)小麗想沿著該紙片邊的方向裁剪出一塊面積為90cm2的長方形紙片,使它的長寬之比為43.小麗能用這塊紙片裁剪出符合要求的紙片嗎?

【答案】110;(2)小麗不能用這塊紙片裁出符合要求的紙片.

【解析】

1)根據(jù)算術(shù)平方根的定義直接得出;

2)直接利用算術(shù)平方根的定義長方形紙片的長與寬,進(jìn)而得出答案.

解:(1)根據(jù)算術(shù)平方根定義可得,該正方形紙片的邊長為10cm;

故答案為:10

2長方形紙片的長寬之比為43,

設(shè)長方形紙片的長為4xcm,則寬為3xcm,

4x3x90

∴12x290,

x2

解得:xx-(負(fù)值不符合題意,舍去),

長方形紙片的長為2cm

∵56,

∴102,

小麗不能用這塊紙片裁出符合要求的紙片.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線過點(diǎn)A3,0),B2,3),C03),其頂點(diǎn)為D

1)求拋物線的解析式;

2)設(shè)點(diǎn)M1,m),當(dāng)MB+MD的值最小時(shí),求m的值;

3)若P是拋物線上位于直線AC上方的一個動點(diǎn),求APC的面積的最大值;

4)若拋物線的對稱軸與直線AC相交于點(diǎn)N,E為直線AC上任意一點(diǎn),過點(diǎn)EEFND交拋物線于點(diǎn)F,以ND,E,F為頂點(diǎn)的四邊形能否為平行四邊形?若能,求點(diǎn)E的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)(3,2)。

(1)求這個二次函數(shù)的關(guān)系式;

(2)畫出它的圖象,并指出圖象的頂點(diǎn)坐標(biāo);

(3)當(dāng)x>0時(shí),求使y≥2的x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案.已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊,下列四個說法:①;②;③;④;其中說法正確的是  

A. ①②B. ①②③C. ①②④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x,y的方程組 ,給出下列結(jié)論:

是方程組的解;②無論a取何值,x,y的值都不可能互為相反數(shù);③當(dāng)a=1時(shí),方程組的解也是方程x+y=4a的解;④x,y的都為自然數(shù)的解有4對.其中正確的個數(shù)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=–x2+bx+c經(jīng)過點(diǎn)A(3,0)和點(diǎn)B(0,3),且這個拋物線的對稱軸為直線l,頂點(diǎn)為C.

(1)求拋物線的解析式;

(2)連接AB、AC、BC,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,∠C=90°,AC=4,矩形DEFG的頂點(diǎn)D、G分別在AC、BC上,邊EFAB上.

(1)求證:△AED∽△DCG;

(2)若矩形DEFG的面積為4,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點(diǎn)P是線段AD上任意一點(diǎn),點(diǎn)QBC上一點(diǎn),且AP=CQ.

(1)求證:BP=DQ;

(2)若AB=4,且當(dāng)PD=5時(shí)四邊形PBQD為菱形.求AD為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將函數(shù)y= (x-2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點(diǎn)A(1,m),B(4,n)平移后的對應(yīng)點(diǎn)分別為點(diǎn)A′,B′,若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達(dá)式是__________.

查看答案和解析>>

同步練習(xí)冊答案