【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測(cè)量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測(cè)得邊DF離地面的高度AC=1.5m,CD=8m,求樹高。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC于點(diǎn)D,交CA的延長(zhǎng)線于點(diǎn)E,過(guò)點(diǎn)D作DH⊥AC,垂足為點(diǎn)H,連接DE,交AB于點(diǎn)F.
(1)求證:DH是⊙O的切線;
(2)若⊙O的半徑為4,
①當(dāng)AE=FE時(shí),求 的長(zhǎng)(結(jié)果保留π);
②當(dāng) 時(shí),求線段AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線1:y=﹣x+1與x軸、y軸分別交于點(diǎn)B、點(diǎn)E,拋物線L:y=ax2+bx+c經(jīng)過(guò)點(diǎn)B、點(diǎn)A(﹣3,0)和點(diǎn)C(0,﹣3),并與直線l交于另一點(diǎn)D.
(1)求拋物線L的解析式;
(2)點(diǎn)P為x軸上一動(dòng)點(diǎn)
①如圖2,過(guò)點(diǎn)P作x軸的垂線,與直線1交于點(diǎn)M,與拋物線L交于點(diǎn)N.當(dāng)點(diǎn)P在點(diǎn)A、點(diǎn)B之間運(yùn)動(dòng)時(shí),求四邊形AMBN面積的最大值;
②連接AD,AC,CP,當(dāng)∠PCA=∠ADB時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線AC,BD交于點(diǎn)O,CE平分∠BCD交AB于點(diǎn)E,交BD于點(diǎn)F,且∠ABC=60°,AB=2BC,連接OE.下列結(jié)論:①∠ACD=30°;②SABCD=ACBC;③OE:AC=:6; ④SOEF=SABCD,成立的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在矩形ABCD中,AB=2,BC=5,∠MPN=90°,且∠MPN的直角頂點(diǎn)在BC邊上,BP=1.
①特殊情形:若MP過(guò)點(diǎn)A,NP過(guò)點(diǎn)D,則= .
②類比探究:如圖2,將∠MPN繞點(diǎn)P按逆時(shí)針?lè)较蛐D(zhuǎn),使PM交AB邊于點(diǎn)E,PN交AD邊于點(diǎn)F,當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),停止旋轉(zhuǎn).在旋轉(zhuǎn)過(guò)程中,的值是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.
(2)拓展探究:在Rt△ABC中,∠ABC=90°,AB=BC=2,AD⊥AB,⊙A的半徑為1,點(diǎn)E是⊙A上一動(dòng)點(diǎn),CF⊥CE交AD于點(diǎn)F.請(qǐng)直接寫出當(dāng)△AEB為直角三角形時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一袋裝有編號(hào)為1,2,3的三個(gè)形狀、大小、材質(zhì)等相同的小球,從袋中隨意摸出1個(gè)球,記事件A為“摸出的球編號(hào)為奇數(shù)”,隨意拋擲一個(gè)之地均勻正方體骰子,六個(gè)面上分別寫有1﹣6這6個(gè)整數(shù),記事件B為“向上一面的數(shù)字是3的整數(shù)倍”,請(qǐng)你判斷等式“P(A)=2P(B)”是否成立,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】費(fèi)爾茲獎(jiǎng)是國(guó)際上享有崇高榮譽(yù)的一個(gè)數(shù)學(xué)獎(jiǎng)項(xiàng),每4年評(píng)選一次,在國(guó)際數(shù)學(xué)家大會(huì)上頒給有卓越貢獻(xiàn)的年齡不超過(guò)40歲的年輕數(shù)學(xué)家,美籍華人丘成桐1982年獲得費(fèi)爾茲獎(jiǎng).為了讓學(xué)生了解費(fèi)爾茲獎(jiǎng)得主的年齡情況,我們查取了截止到2018年60名費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡數(shù)據(jù),并對(duì)數(shù)據(jù)進(jìn)行整理、描述和分析.下面給出了部分信息.
a.截止到2018年費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡數(shù)據(jù)的頻數(shù)分布直方圖如圖1(數(shù)據(jù)分成5組,各組是28≤x<31,31≤x<34,34≤x<37,37≤x<40,x≥40):
b.如圖2,在a的基礎(chǔ)上,畫出扇形統(tǒng)計(jì)圖;
c.截止到2018年費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡在34≤x<37這一組的數(shù)據(jù)是:
36 | 35 | 34 | 35 | 35 | 34 | 34 | 35 | 36 | 36 | 36 | 36 | 34 | 35 |
d.截止到2018年時(shí)費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡的平均數(shù)、中位數(shù)、眾數(shù)如下:
年份 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
截止到2018 | 35.58 | m | 37,38 |
根據(jù)以上信息,回答下列問(wèn)題:
(1)依據(jù)題意,補(bǔ)全頻數(shù)直方圖;
(2)31≤x<34這組的圓心角度數(shù)是度,并補(bǔ)全扇形統(tǒng)計(jì)圖;
(3)統(tǒng)計(jì)表中中位數(shù)m的值是;
(4)根據(jù)以上統(tǒng)計(jì)圖表試描述費(fèi)爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡分布特征.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,以AC為直徑的⊙O交BC于點(diǎn)D,點(diǎn)E在AB上,連接DE并延長(zhǎng)交CA的延長(zhǎng)線于點(diǎn)F,且∠AEF=2∠C.
(1)判斷直線FD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AE=2,EF=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】發(fā)散思維2017·豐臺(tái)區(qū)二模為了解某校八年級(jí)學(xué)生每周上網(wǎng)的時(shí)間,兩名學(xué)生進(jìn)行了抽樣調(diào)查,小麗調(diào)查了八年級(jí)電腦愛好者中40名學(xué)生每周上網(wǎng)的時(shí)間,小杰從全校400名八年級(jí)學(xué)生中隨機(jī)抽取了40名學(xué)生,調(diào)查了他們每周上網(wǎng)的時(shí)間.小麗與小杰整理各自的樣本數(shù)據(jù),如下表所示:
時(shí)間段(時(shí)/周) | 小麗抽樣人數(shù) | 小杰抽樣人數(shù) |
0~1 | 6 | 22 |
1~2 | 10 | 10 |
2~3 | 16 | 6 |
3~4 | 8 | 2 |
(表中每組數(shù)據(jù)包含最小值,不包含最大值)
(1)你認(rèn)為哪名同學(xué)抽取的樣本不合理?請(qǐng)說(shuō)明理由;
(2)專家建議每周上網(wǎng)2小時(shí)以上(含2小時(shí))的同學(xué)應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間,估計(jì)該校全體八年級(jí)學(xué)生中有多少名學(xué)生應(yīng)適當(dāng)減少上網(wǎng)的時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com