【題目】如圖,在△ABC中,ABAC,以AB為直徑的O分別交BC于點D,交CA的延長線于點E,過點DDHAC,垂足為點H,連接DE,交AB于點F

1)求證:DHO的切線;

2)若O的半徑為4,

當(dāng)AEFE時,求 的長(結(jié)果保留π);

當(dāng) 時,求線段AF的長.

【答案】(1)詳見解析;(2)①;②

【解析】

1)根據(jù)同圓的半徑相等和等邊對等角證明:∠ODB=∠OBD=∠ACB,則DHOD,DH是圓O的切線;

2)①根據(jù)等腰三角形的性質(zhì)的∠EAF=∠EAF,設(shè)∠B=∠Cα,得到∠EAF=∠EFA,根據(jù)三角形的內(nèi)角和得到∠B36°,求得∠AOD72°,根據(jù)弧長公式即可得到結(jié)論;

②連接AD,根據(jù)圓周角定理得到∠ADB=∠ADC90°,解直角三角形得到AD,根據(jù)相似三角形的性質(zhì)得到AH3,于是得到結(jié)論.

證明:(1)連接OD,如圖,

OBOD,

∴△ODB是等腰三角形,

OBD=∠ODB①,

ABC中,∵ABAC

∴∠ABC=∠ACB②,

由①②得:∠ODB=∠OBD=∠ACB,

ODAC

DHAC,

DHOD,

DH是圓O的切線;

2)①∵AEEF,

∴∠EAF=∠EAF,

設(shè)∠B=∠Cα,

∴∠EAF=∠EFA,

∵∠E=∠Bα

α+2α+2α180°,

α36°

∴∠B36°,

∴∠AOD72°,

的長=;

②連接AD,

AB為⊙O的直徑,

∴∠ADB=∠ADC90°,

∵⊙O的半徑為4,

ABAC8

,

,

AD,

ADBCDHAC,

∴△ADH∽△ACD

,

,

AH3

CH5,

∵∠B=∠C,∠E=∠B,

∴∠E=∠C

DEDC,∵DHAC

EHCH5,

AE2

ODAC,

∴∠EAF=∠FOD,∠E=∠FDO,

∴△AEF∽△ODF,

,

,

AF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解九年級全體學(xué)生物理實驗操作的情況,隨機(jī)抽取了30名學(xué)生的物理實驗操作考核成績,并將數(shù)據(jù)進(jìn)行整理,分析如下: (說明:考核成績均取整數(shù),A級:10分,B級:9分,C級:8分,D級:7分及以下)

收集數(shù)據(jù)

108,109,510,9,9,10,8,910,9,98,98,10,7,9,8,10,9,69,109,108,10

整理數(shù)據(jù)

整理、描述樣本數(shù)據(jù),繪制統(tǒng)計表如下:

抽取的30名學(xué)生物理實驗操作考核成績頻數(shù)統(tǒng)計表

成績等級

A

B

C

D

人數(shù)()

10

m

n

3

根據(jù)表中的信息,解答下列問題:

(1)m________,n________;

(2)若該校九年級共有800名學(xué)生參加物理實驗操作考核,成績不低于9分為優(yōu)秀,試估計該校九年級參加物理實驗操作考核成績達(dá)到優(yōu)秀的學(xué)生有多少名?

(3)甲、乙、丙、丁是九年級1班物理實驗考核成績?yōu)?/span>10分的四名學(xué)生,學(xué)校計劃從這四名學(xué)生中隨機(jī)選出兩名學(xué)生代表學(xué)校去參加全市中學(xué)生物理實驗操作競賽,用列表法或畫樹狀圖法,求甲、乙兩名學(xué)生中至少有一名被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點A、B在反比例函數(shù)y=(k>0,x>0)的圖象上,橫坐標(biāo)分別為1,4,對角線BDx軸.若菱形ABCD的面積為,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)解析式為y=(m-2)

1)若函數(shù)為正比例函數(shù),試說明函數(shù)yx增大而減小

2)若函數(shù)為二次函數(shù),寫出函數(shù)解析式,并寫出開口方向

3)若函數(shù)為反比例函數(shù),寫出函數(shù)解析式,并說明函數(shù)在第幾象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,點PBC上任意一點(可與點BC重合),分別過BC、D作射線AP的垂線,垂足分別是B′、C′、D′,則BB′+CC′+DD′的最小值是( 。

A. 1 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司準(zhǔn)備投資開發(fā)AB兩種新產(chǎn)品,通過市場調(diào)研發(fā)現(xiàn)如果單獨投資A種產(chǎn)品則所獲利潤yA(萬元)與投資金額x(萬元)之間滿足正比例函數(shù)關(guān)系yA=kx;如果單獨投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間滿足二次函數(shù)關(guān)系yB=ax2+bx.根據(jù)公司信息部的報告yA、yB(萬元)與投資金額x(萬元)的部分對應(yīng)值(如下表)

(1)求正比例函數(shù)和二次函數(shù)的解析式

(2)如果公司準(zhǔn)備投資20萬元同時開發(fā)A、B兩種新產(chǎn)品請你設(shè)計一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系,直線y軸交于點A,與雙曲線交于點

1)求點B的坐標(biāo)及k的值;

2)將直線AB平移,使它與x軸交于點C,與y軸交于點D,若的面積為6,求直線CD的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設(shè)每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠準(zhǔn)備用圖甲所示的A型正方形板材和B型長方形板材,制作成圖乙所示的豎式和橫式兩種無蓋箱子.

若該工廠準(zhǔn)備用不超過10000元的資金去購買A,B兩種型號板材,并全部制作豎式箱子,已知A型板材每張30元,B型板材每張90元,求最多可以制作豎式箱子多少只?

若該工廠倉庫里現(xiàn)有A型板材65張、B型板材110張,用這批板材制作兩種類型的箱子,問制作豎式和橫式兩種箱子各多少只,恰好將庫存的板材用完?

若該工廠新購得65張規(guī)格為C型正方形板材,將其全部切割成A型或B型板材不計損耗,用切割成的板材制作兩種類型的箱子,要求豎式箱子不少于20只,且材料恰好用完,則能制作兩種箱子共______

查看答案和解析>>

同步練習(xí)冊答案