【題目】如圖,在△ABC中,∠BAC90°,以AC為直徑的OBC于點(diǎn)D,點(diǎn)EAB上,連接DE并延長交CA的延長線于點(diǎn)F,且∠AEF2C

1)判斷直線FDO的位置關(guān)系,并說明理由;

2)若AE2EF4,求O的半徑.

【答案】(1)直線FDO相切,理由詳見解析;(2O的半徑為2

【解析】

1)連接OD,根據(jù)已知條件得到∠AEF=∠AOD,等量代換得到∠AOD+∠AED180°,求得∠ODF90°,于是得到結(jié)論;

2)解直角三角形得到∠F30°,AF,求得OF2OD,于是得到ODFA,即可得到結(jié)論.

解:(1)直線FD與⊙O相切;

理由:連接OD

∵∠AEF2C,∠AOD2C,

∴∠AEF=∠AOD,

∵∠AEF+AED180°,

∴∠AOD+AED180°

∵∠BAC90°,

∴∠ODF90°

∴直線FD與⊙O相切;

2)∵∠BAC90°AE2,EF4,

∴∠F30°AF,

∵∠ODF90°,

OF2OD

ODFA,

∴⊙O的半徑為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(m+2x+2m0

1)求證:不論m為何值,該方程總有兩個實(shí)數(shù)根;

2)若直角ABC的兩直角邊AB、AC的長是該方程的兩個實(shí)數(shù)根,斜邊BC的長為3,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上,已知紙板的兩條直角邊DE=0.4m,EF=0.2m,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,弦AB=1,點(diǎn)CAB上移動,連結(jié)OC,過點(diǎn)CCDOC交⊙O于點(diǎn)D,則CD的最大值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),連接AP并延長,交BC于點(diǎn)Q.連接DP.將ADP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°ABP'.連結(jié)PP',若AP=1PB=2,PD=,則正方形的邊長為(  )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖120194月份的日歷,現(xiàn)用一長方形在日歷表中任意框出4個數(shù)(如圖2),下列表示a,b,c,d之間關(guān)系的式子中不正確的是( )

A. adbcB. a+c+2b+dC. a+b+14c+dD. a+db+c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),已知點(diǎn)G在正方形ABCD的對角線AC上,GEBC,垂足為點(diǎn)E,GFCD,垂足為點(diǎn)F.

(1)證明與推斷:

①求證:四邊形CEGF是正方形;

②推斷:的值為   

(2)探究與證明:

將正方形CEGF繞點(diǎn)C順時(shí)針方向旋轉(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AGBE之間的數(shù)量關(guān)系,并說明理由:

(3)拓展與運(yùn)用:

正方形CEGF在旋轉(zhuǎn)過程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長CGAD于點(diǎn)H.若AG=6,GH=2,則BC=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了參加2018年的全國初中生數(shù)學(xué)競賽,喬老師利用寒假把甲、乙兩名同學(xué)的前五個學(xué)期的數(shù)學(xué)成績(單位:分)統(tǒng)計(jì)成下表:

第一學(xué)期

第二學(xué)期

第三學(xué)期

第四學(xué)期

第五學(xué)期

75

80

85

90

95

95

87

88

80

75

(1)分別求出甲、乙兩名同學(xué)前五個學(xué)期的數(shù)學(xué)平均成績;

(2)在圖中分別畫出甲、乙兩名同學(xué)前五個學(xué)期的數(shù)學(xué)成績的折線統(tǒng)計(jì)圖;

(3)如果你是喬老師,你認(rèn)為應(yīng)該派哪名學(xué)生參加數(shù)學(xué)競賽?請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線lyx軸交于點(diǎn)B1,以OB1為邊長作等邊三角形A1OB1,過點(diǎn)A1A1B2平行于x軸,交直線于點(diǎn)B2,以A1B2為邊長作等邊三角形A2A1B2,過點(diǎn)A2A2B3平行于x軸,交直線l于點(diǎn)B3,以A2B3為邊長作等邊三角形A3A2B3,則點(diǎn)A2019的橫坐標(biāo)是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案