【題目】如圖,已知二次函數(shù)yax2+bx+4的圖象與x軸交于點(diǎn)A(4,0)和點(diǎn)D(1,0),與y軸交于點(diǎn)C,過點(diǎn)CBC平行于x軸交拋物線于點(diǎn)B,連接AC

(1)求這個(gè)二次函數(shù)的表達(dá)式;

(2)點(diǎn)M從點(diǎn)O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng);點(diǎn)N從點(diǎn)B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停動(dòng),過點(diǎn)NNQ垂直于BCAC于點(diǎn)Q,連結(jié)MQ.

①求△AQM的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,寫出自變量的取值范圍;當(dāng)t為何值時(shí),S有最大值,并求出S的最大值;

②是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

【答案】(1)y=﹣x2+3x+4;(2)S=-t2+t+2;0≤t≤2;t時(shí),S最大值;②存在,點(diǎn)M的坐標(biāo)分別為(1,0)(2,0)

【解析】

(1)由待定系數(shù)法將AD兩點(diǎn)代入即可求解.

(2)①分別用t表示出AM、PQ,由三角形面積公式直接寫出含有t的二次函數(shù)關(guān)系式,由二次函數(shù)的最大值可得答案;

②分類討論直角三角形的直角頂點(diǎn),然后解出t,求得M坐標(biāo).

(1)∵二次函數(shù)的圖象經(jīng)過A(4,0)和點(diǎn)D(1,0),

,

解得

所以,二次函數(shù)的解析式為y=﹣x2+3x+4

(2)①延長(zhǎng)NQx軸于點(diǎn)P,

BC平行于x軸,C(0,4)

B(3,4),NPOA

根據(jù)題意,經(jīng)過t秒時(shí),NBt,OM2t,

CN3t,AM42t

∵∠BCA=∠MAQ45°,

QNCN3t,

PQNPNQ4(1t)1+t

SAMQ=AM×PQ=(4-2t)(1+t)

=﹣t2+t+2

S=-t2+t+2=-(t-)2+

a=﹣10,且0≤t≤2,∴S有最大值.

當(dāng)t時(shí),S最大值

②存在點(diǎn)M,使得AQM為直角三角形.

設(shè)經(jīng)過t秒時(shí),NBt,OM2t,

CN3t,AM42t,

∴∵∠BCA=∠MAQ45°

.若∠AQM90°,

PQ是等腰RtMQA底邊MA上的高.

PQ是底邊MA的中線,

PQAPMA,

1+t(42t),

解得,t,

M的坐標(biāo)為(1,0)

.若∠QMA90°,此時(shí)QMQP重合.

QMQPMA,

1+t42t,

t1,

∴點(diǎn)M的坐標(biāo)為(2,0)

所以,使得AQM為直角三角形的點(diǎn)M的坐標(biāo)分別為(1,0)(2,0)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉行漢字聽寫比賽,每位學(xué)生聽寫漢字39個(gè),比賽結(jié)束后隨機(jī)抽查部分學(xué)生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計(jì)圖的一部分.

組別

正確字?jǐn)?shù)x

人數(shù)

A

0≤x8

10

B

8≤x16

15

C

16≤x24

25

D

24≤x32

m

E

32≤x40

n

根據(jù)以上信息解決下列問題:

1)在統(tǒng)計(jì)表中,m= ,n= ,并補(bǔ)全條形統(tǒng)計(jì)圖.

2)扇形統(tǒng)計(jì)圖中“C所對(duì)應(yīng)的圓心角的度數(shù)是

3)若該校共有900名學(xué)生,如果聽寫正確的個(gè)數(shù)少于24個(gè)定為不合格,請(qǐng)你估計(jì)這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x+k的圖象與反比例函數(shù)y=-的圖象交于點(diǎn)A-4,n)和點(diǎn)B

1)求k的值和點(diǎn)B的坐標(biāo);

2)若Px軸上一點(diǎn),且AP=AB,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,ニ次函數(shù)的圖像與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(-3,0),點(diǎn)B的坐標(biāo)為(4,0),連接AC,BC.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C作勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)0出發(fā),在線段OB上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)B作勻速運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t.連接PQ

(1)填空:b=_, c=_;

2)在點(diǎn)P,Q運(yùn)動(dòng)過程中,APQ可能是直角三角形嗎?請(qǐng)說明理由;

3)如圖2,點(diǎn)N的坐標(biāo)為,線段PQ的中點(diǎn)為H,連接NH,當(dāng)點(diǎn)Q關(guān)于直線NH的對(duì)稱點(diǎn)Q`恰好落在線段BC上時(shí),請(qǐng)直接寫出點(diǎn)Q`的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中的正方形ABCD邊長(zhǎng)為4,正方形ABCD的中心為原點(diǎn)O.現(xiàn)做如下實(shí)驗(yàn):拋擲一枚均勻的正方體的骰子(六個(gè)面分別標(biāo)有16這六個(gè)點(diǎn)數(shù)中的一個(gè)),每個(gè)面朝上的機(jī)會(huì)是相同的,連續(xù)拋擲兩次,將骰子朝上的點(diǎn)數(shù)作為直角坐標(biāo)系中點(diǎn)P的坐標(biāo)(第次的點(diǎn)數(shù)作為橫坐標(biāo),第二次的點(diǎn)數(shù)作為縱坐標(biāo))

(1)求點(diǎn)P落在正方形ABCD面上(含正方形內(nèi)部和邊界)的概率;

(2)試將正方形ABCD平移整數(shù)個(gè)單位,則是否存在一種平移,使點(diǎn)P落在正方形ABCD面上的概率為?若存在,請(qǐng)指出平移方式;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測(cè)得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請(qǐng)求出立柱BH的長(zhǎng).(結(jié)果精確到0.1米, ≈1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB6,ECD的中點(diǎn),將△ADE沿AE翻折至△AFE,連接CF,則CF的長(zhǎng)度是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】江門旅游文化節(jié)開幕前,某茶葉公司預(yù)測(cè)今年茶葉能夠暢銷,就用32000元購(gòu)進(jìn)了一批茶葉,上市后很快脫銷,茶葉公司又用68000元購(gòu)進(jìn)第二批茶葉,所購(gòu)數(shù)量是第一批購(gòu)進(jìn)數(shù)量的2,但每千克茶葉進(jìn)價(jià)多了10

(1)該茶葉公司兩次共購(gòu)進(jìn)這種茶葉多少千克?

(2)如果這兩批茶葉每千克的售價(jià)相同,且全部售完后總利潤(rùn)率不低于20%,那么每千克售價(jià)至少是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一科技小組進(jìn)行了機(jī)器人行走性能試驗(yàn),在試驗(yàn)場(chǎng)地有A、B、C三點(diǎn)順次在同一筆直的賽道上,甲、乙兩機(jī)器人分別從A、B兩點(diǎn)同時(shí)同向出發(fā),歷時(shí)7min同時(shí)到達(dá)C點(diǎn),甲機(jī)器人前3分鐘以a m/min的速度行走,乙機(jī)器人始終以60m/min的速度行走,如圖是甲、乙兩機(jī)器人之間的距離y(m)與他們的行走時(shí)間x(min)之間的函數(shù)圖象,請(qǐng)結(jié)合圖象,回答下列問題:

(1)A、B兩點(diǎn)之間的距離是____m,A、C兩點(diǎn)之間的距離是____m,a=____m/min;

(2)求線段EF所在直線的函數(shù)解析式;

(3)設(shè)線段FGx.

①當(dāng)3≤x≤4時(shí),甲機(jī)器人的速度為____m/min;

②直接寫出兩機(jī)器人出發(fā)多長(zhǎng)時(shí)間相距28m.

查看答案和解析>>

同步練習(xí)冊(cè)答案