【題目】如圖,在△ABC中,ADBC邊上的中線,點(diǎn)EAD的中點(diǎn),過點(diǎn)AAFBCBE的延長(zhǎng)線于F,BFACG,連接CF

(1)求證:△AEF≌△DEB;

(2)若∠BAC=90°,①試判斷四邊形ADCF的形狀,并證明你的結(jié)論;

②若AB=8,BD=5,直接寫出線段AG的長(zhǎng)   

【答案】(1)詳見解析;(2)①四邊形ADCF是菱形;詳見解析;②2

【解析】

1)由平行線證明三角形全等所缺少的條件,再根據(jù)三角形全等的判定方法證明三角形全等;

2先證四邊形ADCF是平行四邊形,再證明鄰邊相等,便可得出結(jié)論;

證明AFG∽△CBG,得出AGAC的比例關(guān)系,進(jìn)而由直角三角形的性質(zhì)求得AC,便可得AG

(1)∵AFBC,

∴∠AFE∠DBE

△AEF△DEB中,

,

∴△AEF≌△DEB(AAS);

2四邊形ADCF是菱形,

理由如下:∵△AEF≌△DEB,

∴AFBD,

∵BDDC

∴AFDCBC,

AFBC,

四邊形ADCF是平行四邊形,

∵∠BAC90°,ADBC邊上的中線,

∴ADDC,

四邊形ADCF是菱形;

②∵AFBC

∴△AFG∽△CBG,

∴AG,

∵BD5,ADBC邊上的中線,

∴BC2BD10,

∵∠BAC90°,AB8,

∴AC,

∴AG2,

故答案為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過點(diǎn)點(diǎn),點(diǎn)點(diǎn)是拋物線上任意一點(diǎn),有下列結(jié)論:①; ②一元二次方程的兩個(gè)根為;③若,則;④對(duì)于任意實(shí)數(shù)總成立.其中正確結(jié)論的個(gè)數(shù)為

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,函數(shù))的圖象G與直線交于點(diǎn)A41),點(diǎn)B1n)(n≥4,n為整數(shù))在直線l上.

1)求的值;

2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記圖象與直線l圍成的區(qū)域(不含邊界)為W

①當(dāng)n=5時(shí),求的值,并寫出區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù);

②若區(qū)域W內(nèi)恰有5個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,,垂足為點(diǎn),連接,點(diǎn)延長(zhǎng)線上的一點(diǎn),且

1)求證:的切線;

2)若,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一部記錄片播放了關(guān)于地震的資料及一個(gè)有關(guān)地震預(yù)測(cè)的討論,一位專家指出:在未來20年,A城市發(fā)生地震的機(jī)會(huì)是三分之二

對(duì)這位專家的陳述下面有四個(gè)推斷:

×20≈13.3,所以今后的13年至14年間,A城市會(huì)發(fā)生一次地震;

大于50%,所以未來20年,A城市一定發(fā)生地震;

在未來20年,A城市發(fā)生地震的可能性大于不發(fā)生地震的可能性;

不能確定在未來20年,A城市是否會(huì)發(fā)生地震;

其中合理的是(  。

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是三國時(shí)期的數(shù)學(xué)家趙爽創(chuàng)制的一幅勾股圓方圖.將圖2的矩形分割成四個(gè)全等三角形和一個(gè)正方形,恰好能拼成這樣一個(gè)勾股圓方圖,則該矩形與拼成的正方形的周長(zhǎng)之比為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A40),B02),反比例函數(shù)的圖象經(jīng)過矩形ABCD的頂點(diǎn)C,且交邊AD于點(diǎn)E,若EAD的中點(diǎn),則k的值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),與軸交于點(diǎn),、兩點(diǎn)間的距離為,拋物線的對(duì)稱軸為

(1)求拋物線的解析式;

(2)如圖1,對(duì)稱軸上是否存在點(diǎn),使,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

(3)如圖2,拋物線的頂點(diǎn)為,對(duì)稱軸交軸于點(diǎn),點(diǎn)為拋物線上一點(diǎn),點(diǎn)不與點(diǎn)重合. 當(dāng)時(shí),過點(diǎn)分別作軸的垂線和平行線,與軸交于點(diǎn)、與對(duì)稱軸交于點(diǎn),得到矩形,求矩形周長(zhǎng)的最大值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019潮陽區(qū)校級(jí)月考)已知:二次函數(shù)yx2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C,點(diǎn)D(2,﹣3)在拋物線上.

1)求拋物線的解析式;

2)拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)P,求△PAD周長(zhǎng)的最小值;

3)拋物線的對(duì)稱軸上有一動(dòng)點(diǎn)M,當(dāng)△MAD是等腰三角形時(shí),直接寫出M點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案