【題目】如圖,過四邊形的四個頂點分別作對角線的平行線,所圍成的四邊形顯然是平行四邊形.

當(dāng)四邊形是分別菱形、矩形時,相應(yīng)的平行四邊形一定是菱形、矩形、正方形中的哪一種?請將你的結(jié)論填入下表:

四邊形

菱形

矩形

平行四邊形

________

________

當(dāng)四邊形是矩形時,平行四邊形是什么特殊圖形,證明你的結(jié)論;

反之,當(dāng)用上述方法所圍成的平行四邊形是矩形時,相應(yīng)的原四邊形必須滿足怎樣的條件?(直接寫出結(jié)論)

【答案】(1)矩形菱形;(2)當(dāng)四邊形是矩形時,平行四邊形是菱形,理由詳見解析;(3)當(dāng)平行四邊形是矩形時,原四邊形必須滿足的條件是對角線互相垂直.

【解析】

(1)原四邊形是菱形時,菱形的對角線互相垂直,因此平行四邊形應(yīng)該是個矩形(平行四邊形相鄰的兩邊都垂直),
原四邊形是矩形時,它的對角線相等,那么平行四邊形應(yīng)該是個菱形(平行四邊形相鄰的兩邊都相等);
(2)根據(jù)平行公理的推論求出EF∥GH,EH∥FG,推出平行四邊形EFGH,證出鄰邊相等即可;
(3)根據(jù)(1)我們可看出要想使得出的平行四邊形是矩形,那么原四邊形的對角線就必須垂直,因為只有這樣平行四邊形的相鄰兩邊才垂直.

(1)四邊形ABCD是菱形時,平行四邊形EFGH是矩形,
四邊形ABCD是矩形時,平行四邊形EFGH是菱形,
故答案為:矩形,菱形;

如圖所示:

當(dāng)四邊形是矩形時,平行四邊形是菱形;

理由:

四邊形,均為平行四邊形,

四邊形為矩形,

,

四邊形為菱形;

當(dāng)平行四邊形是矩形時,原四邊形必須滿足的條件是對角線互相垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,為了躲避臺風(fēng),一輪船一直由西向東航行,上午點,在處測得小島的方向是北偏東,以每小時海里的速度繼續(xù)向東航行,中午點到達(dá)處,并測得小島的方向是北偏東,若小島周圍海里內(nèi)有暗礁,問該輪船是否能一直向東航行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分9分)如圖,點ORt△ABC斜邊AB上的一點,以OA為半徑的⊙OBC切于點D,與AC交于點E,連接AD

1)求證:AD平分∠BAC

2)若∠BAC = 60°,OA = 2,求陰影部分的面積(結(jié)果保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Aa,0),B0,a),等腰直角三角形ODC的斜邊經(jīng)過點B,OEAC,交ACE,若OE2,則△BOD與△AOE的面積之差為( 。

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,,點邊上一動點,于點于點,連結(jié),點的中點,則的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一項工程,甲,乙兩公司合做,12天可以完成,共需付施工費102000元;如果甲,乙兩公司單獨完成此項工程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元.

(1)甲,乙兩公司單獨完成此項工程,各需多少天?

(2)若讓一個公司單獨完成這項工程,哪個公司的施工費較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實黨中央長江大保護(hù)新發(fā)展理念,我市持續(xù)推進(jìn)長江岸線保護(hù),還洞庭湖和長江水清岸綠的自然生態(tài)原貌.某工程隊負(fù)責(zé)對一面積為33000平方米的非法砂石碼頭進(jìn)行拆除,回填土方和復(fù)綠施工,為了縮短工期,該工程隊增加了人力和設(shè)備,實際工作效率比原計劃每天提高了20%,結(jié)果提前11天完成任務(wù),求實際平均每天施工多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了發(fā)展鄉(xiāng)村旅游,某村準(zhǔn)備在河道上修一座與河道垂直的橋,如圖(1)所示,直線l,m代表河流的兩岸河道,且lm,點A是某村自助農(nóng)場的所在地,點B是某村游樂場所在地.

問題1:造橋選址橋準(zhǔn)備選在到AB兩地的距離之和剛好為最小的點C處,即在直線l上找一點C,使AC+BC的值為最。埨媚闼鶎W(xué)的知識在圖(1)中作出點C的位置,并簡單說明你所設(shè)計方案的原理;

問題2:測量河寬:在測量河道的寬度時施工隊在河道南側(cè)的開闊地用以下方法(如圖2所示):①作CDl,與河對岸的直線m相交于D;②在直線m上取E,F兩點,使得DEEF10米;③過點Fm的垂線FG,使得點GC,E兩點在同一直線上;④測量FG的長度為20米.請你確定河道的寬度,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)ykx+bk≠0)的圖象與反比例函數(shù)yx>0,m≠0)的圖象交于點C,與x軸、y軸分別交于點D、B,已知OB=3,點C的橫坐標(biāo)為4,cos∠0BD

(1)求一次函數(shù)及反比例函數(shù)的表達(dá)式;

(2)將一次函數(shù)圖象向下平移,使其經(jīng)過原點O,與反比例函數(shù)圖象在第四象限內(nèi)的交點為A,連接AC,求四邊形OACB的面積.

查看答案和解析>>

同步練習(xí)冊答案