【題目】已知反比例函數(shù)圖象經(jīng)過點(diǎn)M(2,6)
(1)求這個(gè)函數(shù)的解析式,并指出它的圖象位于哪些象限?
(2)在這個(gè)圖象上任取兩個(gè)點(diǎn)A(a,b)和B(a′,b′),如果a>a′,那么b和b′怎樣的大小關(guān)系?
【答案】(1)y=,它的圖象位于第一三象限;(2)見解析.
【解析】
(1)設(shè)這個(gè)反比例函數(shù)解析式為y=,把點(diǎn)M的坐標(biāo)代入解析式求出k的值即可得解,再根據(jù)反比例函數(shù)圖象的性質(zhì)解答即可;(2)分a、a′同號(hào)和異號(hào)兩種情況,根據(jù)反比例函數(shù)的增減性即可解答.
(1)設(shè)這個(gè)反比例函數(shù)解析式為y=,
∵反比例函數(shù)圖象經(jīng)過點(diǎn)M(2,6),
∴=6,
∴k=12,
∴y=,
∵k=12>0,
∴它的圖象位于第一三象限;
(2)①a>a′>0或a′<a<0時(shí),
∵k>0,
∴在每一個(gè)象限內(nèi),y隨x的增大而減小,
∵a>a′,
∴b<b′;
②a>0>a′時(shí),y=,
∵a>0,
∴b>0,
∵a′<0,
∴b′<0,
∴b>b′.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正三角形ABC的邊長(zhǎng)為3+.
(1)如圖,正方形EFPN的頂點(diǎn)E,F(xiàn)在邊AB上,頂點(diǎn)N在邊AC上,在正三角形ABC及其內(nèi)部,以點(diǎn)A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,
(1)求k的值;
(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時(shí)x的取值范圍;
(3)過原點(diǎn)O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連接EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長(zhǎng)為4,求BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)和一次函數(shù)y=k2x+b的圖象交于點(diǎn)M(3,﹣)和點(diǎn)N(﹣1,2),則k1=_____,k2=____,一次函數(shù)的圖象交x軸于點(diǎn)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,D是BC的中點(diǎn),DE⊥BC,垂足為D,交AB于點(diǎn)E,且BE2﹣EA2=AC2.
(1)求證:∠A=90°;
(2)若AB=8,BC=10,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),P為△ABC所在平面上一點(diǎn),且∠APB=∠BPC=∠CPA=120°,則點(diǎn)P叫做△ABC的費(fèi)馬點(diǎn).
(1)如果點(diǎn)P為銳角△ABC的費(fèi)馬點(diǎn),且∠ABC=60°.
①求證:△ABP∽△BCP;
②若PA=3,PC=4,則PB= .
(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD 相交于P點(diǎn).如圖(2)
①求∠CPD的度數(shù);
②求證:P點(diǎn)為△ABC的費(fèi)馬點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)分?jǐn)?shù)(分子、分母均為正整數(shù))的分母比它的分子大5.
(1)若將這個(gè)分?jǐn)?shù)的分子加上14,分母減去1,則所得的分?jǐn)?shù)是原分?jǐn)?shù)的倒數(shù),求這個(gè)分?jǐn)?shù);
(2)若將這個(gè)分?jǐn)?shù)的分子、分母同時(shí)加上4,試比較所得的分?jǐn)?shù)和原分?jǐn)?shù)的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形.對(duì)一個(gè)各條邊都相等的凸多邊形(邊數(shù)大于3),可以由若干條對(duì)角線相等判定它是正多邊形.例如,各條邊都相等的凸四邊形,若兩條對(duì)角線相等,則這個(gè)四邊形是正方形.
(1)已知凸五邊形的各條邊都相等.
①如圖1,若,求證:五邊形是正五邊形;
②如圖2,若,請(qǐng)判斷五邊形是不是正五邊形,并說明理由:
(2)判斷下列命題的真假.(在括號(hào)內(nèi)填寫“真”或“假”)
如圖3,已知凸六邊形的各條邊都相等.
①若,則六邊形是正六邊形;( )
②若,則六邊形是正六邊形. ( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com