【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點(diǎn),且OD∥BC,OD與AC交于點(diǎn)E.
(1)若∠B=70°,求∠CAD的度數(shù);
(2)若AB=4,AC=3,求DE的長(zhǎng).
【答案】(1)35°;(2)2﹣.
【解析】
試題(1)根據(jù)圓周角定理可得∠ACB=90°,則∠CAB的度數(shù)即可求得,在等腰△AOD中,根據(jù)等邊對(duì)等角求得∠DAO的度數(shù),則∠CAD即可求得.
(2)易證OE是△ABC的中位線,利用中位線定理求得OE的長(zhǎng),則DE即可求得.
試題解析:解:(1)∵AB是半圓O的直徑,∴∠ACB=90°.
又∵OD∥BC,∴∠AEO=90°,即OE⊥AC.
∵∠B=70°,∴∠CAB=90°﹣∠B=90°﹣70°=20°.
∵OA=OD,∴∠DAO=∠ADO=55°.
∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°.
(2)在Rt△ABC中,BC=.
∵OE⊥AC,∴AE=EC.
又∵OA=OB,∴OE=BC=.
又∵OD=AB=2,∴DE=OD﹣OE=2﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在下列表格中填上相應(yīng)的值
x | … | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | … |
… | -1 | -2 | 3 | 1 | … |
(2)若將上表中的變量用y來代替(即有),請(qǐng)以表中的的值為點(diǎn)的坐標(biāo), 在下方的平面直角坐標(biāo)系描出相應(yīng)的點(diǎn),并用平滑曲線順次連接各點(diǎn)
(3)在(2)的條件下,可將y看作是x的函數(shù) ,請(qǐng)你結(jié)合你所畫的圖像,寫出該函數(shù)圖像的兩個(gè)性質(zhì) :__________________________________________________.
(4)結(jié)合圖像,借助之前所學(xué)的函數(shù)知識(shí),直接寫出不等式的解集: ____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名同學(xué)推鉛球,鉛球出手后行進(jìn)過程中離地面的高度(單位:)與水平距離(單位:)近似滿足函數(shù)關(guān)系,其圖象如圖所示.已知鉛球落地時(shí)的水平距離為.
(1)求鉛球出手時(shí)離地面的高度;
(2)在鉛球行進(jìn)過程中,當(dāng)它離地面的高度為時(shí),求此時(shí)鉛球的水平距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點(diǎn)A作⊙O的切線交OC的延長(zhǎng)線于點(diǎn)D,交BC的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)一個(gè)不透明的口袋中裝有2個(gè)紅球(記為紅球1、紅球2)、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.
(1)從中任意摸出1個(gè)球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出1個(gè)球,再?gòu)挠嘞碌?個(gè)球中任意摸出1個(gè)球,請(qǐng)用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形OABC的邊OC、OA分別在x、y軸的正半軸上,設(shè)點(diǎn)B(4,4),點(diǎn)P(t,0)是x軸上一動(dòng)點(diǎn),過點(diǎn)O作OH⊥AP于點(diǎn)H,直線OH交直線BC于點(diǎn)D,連AD.
(1)如圖1,當(dāng)點(diǎn)P在線段OC上時(shí),求證:OP=CD;
(2)在點(diǎn)P運(yùn)動(dòng)過程中,△AOP與以A、B、D為頂點(diǎn)的三角形相似時(shí),求t的值;
(3)如圖2,拋物線y=﹣x2+x+4上是否存在點(diǎn)Q,使得以P、D、Q、C為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC=2,D、E兩點(diǎn)分別在AC、BC上,且DE∥AB,DC=2,將△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△CD′E′,如圖2,點(diǎn)D、E對(duì)應(yīng)點(diǎn)分別為D′、E′、D′、E′與AC相交于點(diǎn)M,當(dāng)E′剛好落在邊AB上時(shí),△AMD′的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某海域有兩個(gè)海拔均為200米的海島A和海島B,一勘測(cè)飛機(jī)在距離海平面垂直高度為1100米的空中飛行,飛行到點(diǎn)C處時(shí)測(cè)得正前方一海島頂端A的俯角是45°,然后沿平行于AB的方向水平飛行1.99×104米到達(dá)點(diǎn)D處,在D處測(cè)得正前方另一海島頂端B的俯角是60°,求兩海島間的距離AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長(zhǎng)為4米.
(1)求新傳送帶AC的長(zhǎng)度.
(2)如果需要在貨物著地點(diǎn)C的左側(cè)留出2米的通道,試判斷距離B點(diǎn)5米的貨物MNQP是否需要挪走,并說明理由.
參考數(shù)據(jù):.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com