【題目】在平行四邊形中,,點(diǎn),分別在邊,上,且

1)如圖1,若,求證:;

2)如圖2,若,且點(diǎn)的中點(diǎn),連接于點(diǎn),求;

3)如圖3,若,探究線段、三之間的數(shù)量關(guān)系,說(shuō)明理由.

【答案】1)證明見解析;(2;(3

【解析】

1)連接AC,根據(jù)題意判定平行四邊形ABCD為菱形,△ABC為等邊三角形,然后利用AAS定理判定△BCE≌△ACF,從而得出BE=AF,使問(wèn)題得解;

2)連接AC,過(guò)點(diǎn)MMNCF,由含30°直角三角形的性質(zhì)求得,,設(shè)CN=x,則,然后利用平行判定△FMN∽△FBC,根據(jù)相似三角形的性質(zhì)求得,然后利用勾股定理求解即可;

3)連接AC,過(guò)點(diǎn)AAKBC,在DA上截取DH=CD,根據(jù)有一個(gè)角是60°的等腰三角形是等邊三角形判定△HCD是等邊三角形,然后根據(jù)AA定理判定△BCE ∽△FCH,根據(jù)相似三角形的性質(zhì)求得,即HF=kBE,從而使問(wèn)題得解.

解:(1)連接AC

因?yàn)樵谄叫兴倪呅?/span>ABCD中,,

∴平行四邊形ABCD為菱形,△ABC為等邊三角形

AC=BC,∠B=BAC=DAC=ACB=60°,

又∵

∴∠ACE+BCE=ACE+ACF

∴∠BCE=ACF

∴△BCE≌△ACF

BE=AF

AB=AE+BE=

2)連接AC,過(guò)點(diǎn)MMNCF

由(1)已證,△ABC為等邊三角形,△BCE≌△ACF

的中點(diǎn)

CEAB

∴在RtBCE中,∠BCE=30°

,

由題意,∴∠BCF=90°

RtAMCN中,∠CMN=30°

設(shè)CN=x,則

MNCF

MNBC

∴△FMN∽△FBC

,

解得:

RtFMN中,

3)由題意可知,在平行四邊形ABCD中,∠B=D=60°,

連接AC,過(guò)點(diǎn)AAKBC,在DA上截取DH=CD

DH=CD,∠B=D=60°

∴△HCD是等邊三角形

∴∠HCD=60°

又∵∠ECF=60°

∴∠BCE+ECH=FCH+ECH

∴∠BCE =FCH

∴△BCE ∽△FCH

,即HF=kBE

CD=DF+HF=DF+ kBE

又∵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形的邊長(zhǎng)為,點(diǎn)是對(duì)角線的中點(diǎn).點(diǎn)邊上一動(dòng)點(diǎn),延長(zhǎng)線交于點(diǎn)長(zhǎng)度可能為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某天,甲車間工人加工零件,工作中有一次停產(chǎn)檢修機(jī)器,然后以原來(lái)的工作效率繼續(xù)加工,由于任務(wù)緊急,乙車間加入與甲車間一起生產(chǎn)零件,兩車間各自加工零件的數(shù)量y(個(gè))與甲車間加工時(shí)間t(時(shí))之間的函數(shù)圖象如圖所示.

1)求乙車間加工零件的數(shù)量y與甲車間加工時(shí)間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.

2)求甲車間加工零件總量a

3)當(dāng)甲、乙兩車間加工零件總數(shù)量為320個(gè)時(shí),直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)僅用無(wú)刻度的直尺完成下列畫圖,不寫畫法,保留畫圖痕跡.(用虛線表示畫圖過(guò)程,實(shí)線表示畫圖結(jié)果)

   

1)如圖①,四邊形 ABCD 中,AB=AD,∠B=D,畫出四邊形 ABCD 的對(duì)稱軸 m;

2)如圖②,四邊形 ABCD 中,ADBC,∠A=D,畫出 BC 邊的垂直平分線 n

3)如圖③,ABC 的外接圓的圓心是點(diǎn) OD 的中點(diǎn),畫一條直線把ABC 分成面積相等的兩部分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在菱形ABCD中,AB=4,∠BAD=120°,點(diǎn)P是直線AB上任意一點(diǎn),聯(lián)結(jié)PC,在∠PCD內(nèi)部作射線CQ與對(duì)角線BD交于點(diǎn)Q(與B、D不重合),且∠PCQ=30°.

1)如圖,當(dāng)點(diǎn)P在邊AB上時(shí),如果BP=3,求線段PC的長(zhǎng);

2)當(dāng)點(diǎn)P在射線BA上時(shí),設(shè),求y關(guān)于的函數(shù)解析式及定義域;

3)聯(lián)結(jié)PQ,直線PQ與直線BC交于點(diǎn)E,如果相似,求線段BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A,B在反比例函數(shù)的圖象上,點(diǎn)C,D在反比例函數(shù)的圖象上,AC//BD//y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,OACABD的面積之和為,則k的值為(

A. 4 B. 3 C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),且與軸另交點(diǎn)為.

1)求拋物線的解析式;

2)如圖,直線與拋物線相交于點(diǎn)和點(diǎn)(點(diǎn)在第二象限),求的值(用含的式子表示);

3)在(2)中,若,設(shè)點(diǎn)是點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn),如圖.平面內(nèi)是否存在點(diǎn),使得以點(diǎn)、、、為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,分別過(guò)點(diǎn),作垂直于軸的直線,探究直線、與函數(shù)的圖象(雙曲線)之間的關(guān)系,下列結(jié)論正確的是(

A.兩條直線可能都不與雙曲線相交

B.當(dāng)時(shí),兩條直線與雙曲線的交點(diǎn)到原點(diǎn)的距離不相等

C.當(dāng)時(shí),兩條直線與雙曲線的交點(diǎn)都在軸左側(cè)

D.當(dāng)時(shí),兩條直線與雙曲線的交點(diǎn)都在軸右側(cè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)的坐標(biāo)為,且,拋物線圖象經(jīng)過(guò)三點(diǎn).

1)求兩點(diǎn)的坐標(biāo);

2)求拋物線的解析式;

3)若點(diǎn)是直線下方的拋物線上的一個(gè)動(dòng)點(diǎn),作于點(diǎn),當(dāng)的值最大時(shí),求此時(shí)點(diǎn)的坐標(biāo)及的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案