【題目】如果一組數(shù)據(jù)x1,x2,…,xn的平均數(shù)為a,數(shù)據(jù)y1,y2,…,yn的平均數(shù)為b,則數(shù)據(jù)4x1+y14x2+y2,…,4xn+yn的平均數(shù)為__________.

【答案】4a+b

【解析】

利用平均數(shù)的求法,把4x1+y1,4x2+y2,…,4xn+yn的平均數(shù)用ab表示出來,再根據(jù)平均數(shù)的定義求解即可.

解:∵x1,x2,…,xn的平均數(shù)為a,y1,y2,…,yn的平均數(shù)為b,
x1+x2+x3++xn=na;y1+y2+y3+…+yn=nb;

4x1+y1,4x2+y2,…,4xn+yn的平均數(shù)為

(4x1+y1+4x3+y3…4xn+yn)÷n
=[4(x1+x2+x3++xn)+(y1+y2+y3+…+yn)]÷n
=(4na+nb)÷n
=4a+b

故答案為:4a+b

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求回答問題:
(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=90°,B,C,D在一條直線上.

填空:線段AD,BE之間的關(guān)系為
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,請(qǐng)判斷AD,BE的關(guān)系,并說明理由.

(3)解決問題
如圖3,線段PA=3,點(diǎn)B是線段PA外一點(diǎn),PB=5,連接AB,將AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AC,隨著點(diǎn)B的位置的變化,直接寫出PC的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩直線AB,CD相交于點(diǎn)O,OE平分BOD,∠AOC∶∠AOD=7∶11.

(1)COE的度數(shù);

(2)OFOECOF的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小洋八年級(jí)下學(xué)期的數(shù)學(xué)成績(jī)(單位:分)如下表所示:

測(cè)試

類別

平時(shí)

期中

考試

期末

考試

測(cè)驗(yàn)1

測(cè)驗(yàn)2

測(cè)驗(yàn)3

測(cè)驗(yàn)4

成績(jī)

106

102

115

109

112

110

1)計(jì)算小洋該學(xué)期的數(shù)學(xué)平時(shí)平均成績(jī);

2)如果該學(xué)期的總評(píng)成績(jī)是根據(jù)如圖所示的權(quán)重計(jì)算的,請(qǐng)計(jì)算出小洋該學(xué)期的數(shù)學(xué)總評(píng)成績(jī).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,點(diǎn)D為邊BC的中點(diǎn),點(diǎn)M為邊AB上的一動(dòng)點(diǎn),點(diǎn)N為邊AC上的一動(dòng)點(diǎn),且∠MDN=90°,則cos∠DMN為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點(diǎn),將△ABP沿BP翻折至△EBP,PE與CD相交于點(diǎn)O,BE與CD相交于點(diǎn)G,且OE=OD,則AP的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點(diǎn)D為AB的中點(diǎn),以點(diǎn)D為圓心作圓心角為90°的扇形DEF,點(diǎn)C恰在弧EF上,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是用大小相同的小正方形拼成的圖形,拼第1個(gè)圖需要3個(gè)小正方形,拼第2個(gè)圖需要8個(gè)小正方形,拼第3個(gè)圖需要15個(gè)小正方形,

根據(jù)拼圖規(guī)律回答:第4個(gè)圖形需要多少個(gè)小正方形;第n個(gè)圖形比第個(gè)圖多需要多少個(gè)小正方形;第n個(gè)圖形共需要多少個(gè)小正方形;

若第n個(gè)圖形比第個(gè)多2019個(gè)小正方形,求n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】羅山西亞麗寶超市第一次用5000元購進(jìn)甲、乙兩種商品,其中乙商品的件數(shù)比甲商品件數(shù)的倍多15件,甲、乙兩種商品的進(jìn)價(jià)和售價(jià)如下表:注:獲利售價(jià)進(jìn)價(jià)

進(jìn)價(jià)

20

30

售價(jià)

29

40

羅山西亞麗寶超市將第一次購進(jìn)的甲、乙兩種商品全部賣完后一共可獲得多少利潤(rùn)?

該購物中心第二次以第一次的進(jìn)價(jià)又購進(jìn)甲、乙兩種商品其中甲種商品的件數(shù)不變,乙種商品的件數(shù)是第一次的3倍;甲商品按原價(jià)銷售,乙商品打折銷售,第二次兩種商品都銷售完以后獲得的總利潤(rùn)比第一次獲得的總利潤(rùn)多160元,求第二次乙種商品是按原價(jià)打幾折銷售?

查看答案和解析>>

同步練習(xí)冊(cè)答案