【題目】如圖,在Rt△ABC中,∠A=90°,AB=6,AC=8,點D為邊BC的中點,點M為邊AB上的一動點,點N為邊AC上的一動點,且∠MDN=90°,則cos∠DMN為( )

A.
B.
C.
D.

【答案】D
【解析】解:連結AD,如圖,

∵∠A=90°,AB=6,AC=8,

∴BC= =10,

∵點D為邊BC的中點,

∴DA=DC=5,

∴∠1=∠C,

∵∠MDN=90°,∠A=90°,

∴點A、D在以MN為直徑的圓上,

∴∠1=∠DMN,

∴∠C=∠DMN,

在Rt△ABC中,cosC= = = ,

∴cos∠DMN=

所以答案是:D.

【考點精析】通過靈活運用相似三角形的判定與性質,掌握相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P為等邊三角形ABC內的一點,且P到三個頂點A,BC的距離分別為3,4,5,則ABC的面積為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】出租車司機老姚某天上午營運全是在東西走向的解放路上進行.如 果規(guī)定向東為正,向西為負,他這天上午行車里程(單位:km)如下:

+8,+6,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4+8,﹣9,﹣12

(1)將第幾名乘客送到目的地時,老姚剛好回到上午出發(fā)點?

(2)將最后一名乘客送到目的地時,老姚距上午出發(fā)點多遠?在出發(fā)點的東面 還是西面?

(3)若汽車耗油量為0.075L/km,這天上午老姚的出租車耗油多少L

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠DAB=∠BCD=90°,點E是BD上任意一點,點O是AC的中點,AF∥EC交EO的延長線于點F,連接AE,CF.

(1)判斷四邊形AECF是什么四邊形,并證明;

(2)若點E是BD的中點,四邊形AECF又是什么四邊形?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:A(0,1),B(2,0),C(4,3)

(1)在直角坐標系中描出各點,畫出△ABC

(2)求△ABC的面積;

(3)設點P在坐標軸上,且△ABP與△ABC的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一組數(shù)據(jù)x1,x2,…,xn的平均數(shù)為a,數(shù)據(jù)y1y2,…,yn的平均數(shù)為b,則數(shù)據(jù)4x1+y1,4x2+y2,…,4xn+yn的平均數(shù)為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)判斷下列未知數(shù)的值是不是方程2x2+x-1=0的根.

x1=-1,x2=1x3=.

2)已知m是方程x2-x-2=0的一個根,求代數(shù)式m2-m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,E,F(xiàn),C在一條直線上,若將△DEC的邊EC沿AC方向平移,平移過程中始終滿足下列條件:AE=CF,DE⊥AC于點E,BF⊥AC于點F,且AB=CD.則當點E,F(xiàn)不重合時,BD與EF的關系是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)當a≠0時,求的值.(寫出解答過程)

(2)若a≠0,b≠0,且+ =0,則的值為   

(3)若ab>0,則++的值為   

查看答案和解析>>

同步練習冊答案