【題目】如圖①,直線PQ同側(cè)有兩點(diǎn)M,N,點(diǎn)T在直線PQ上,若∠MTP=∠NTQ,則稱點(diǎn)T為M,N在直線PQ上的投射點(diǎn).
(1)如圖②,在Rt△ABC中,∠B=60°,D為斜邊AB的中點(diǎn),E為AC的中點(diǎn).求證:點(diǎn)D為C,E在直線AB上的投射點(diǎn);
(2)如圖③,在正方形網(wǎng)格中,已知點(diǎn)A,B,C三點(diǎn)均在格點(diǎn)上,請(qǐng)僅用沒有刻度的直尺在AC上畫出點(diǎn)P,在BC上畫出點(diǎn)Q,使A,P在BC上的投射點(diǎn)Q滿足CQ=2BQ;
(3)如圖④,在Rt△ABC中,∠C=90°,AC=BC,在AB,BC邊上是否分別存在點(diǎn)D,E,使點(diǎn)D為E,C在AB上的投射點(diǎn),點(diǎn)E為A,D在BC上的投射點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說明理由.
【答案】(1)證明見解析;(2)畫圖見解析;(3)存在,.
【解析】
(1)先求出∠BDC=60°,進(jìn)而判斷出∠ADE=∠B=60°,即可得出結(jié)論;
(2)根據(jù)對(duì)稱性即可作出圖形;
(3)根據(jù)對(duì)稱和相似作出圖形,再用相似三角形的性質(zhì)即可得出結(jié)論.
(1)∵在Rt△ABC中,D為斜邊AB的中點(diǎn),
∴CD=BD=BC,
又∵∠B=60°,
∴∠BDC=60°,
∵D,E分別為AB,AC的中點(diǎn),
∴DE∥AC,
∴∠ADE=∠B=60°,
∴∠ADE=∠BDC,
∴點(diǎn)D為C,E在直線AB上的投射點(diǎn);
(2)如圖③,
作法:
1、在格點(diǎn)上取點(diǎn)G,H,連接HG交BC于Q,(理由:△BQG∽△HQC)
2、作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)A',連接A'Q并延長(zhǎng)交AC于P,(∠AQB=∠A'QB=∠PQC)
即:點(diǎn)P就是所求作的點(diǎn);
(3)存在,
如圖④,作點(diǎn)C關(guān)于AB的對(duì)稱點(diǎn)C′,連接BC',AC',
則四邊形ACBC′為正方形,
作點(diǎn)A關(guān)于BC的對(duì)稱點(diǎn)A′,連接A'C'交AB于D,交BC于E,
即:點(diǎn)D,E是所求作的點(diǎn),
∴C′,D,E,A在同一直線上,
CA′=CA=C′A=C′B=BC,CD=C′D,
∴△C′BE≌△A′CE,
∴BE=BC=C′A,
∵AC′∥BC,
∴△BDE∽△ADC′,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B.C的坐標(biāo)分別為A(-1,3),B(-3,1),C(-1,1).請(qǐng)解答下列問題:
(1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,并寫出B1的坐標(biāo);
(2)畫出△A1B1C1繞點(diǎn)C1順時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2;
(3)求出點(diǎn)A1走過的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,E為AB的中點(diǎn).
(1)求證:△ADC∽△ACB;
(2)CE與AD有怎樣的位置關(guān)系?試說明理由;
(3)若AD=4,AB=6,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ACB中,∠ACB=90°,以點(diǎn)A為圓心,AC長(zhǎng)為半徑的圓交AB于點(diǎn)D,BA的延長(zhǎng)線交⊙A于點(diǎn)E,連接CE,CD,F(xiàn)是⊙A上一點(diǎn),點(diǎn)F與點(diǎn)C位于BE兩側(cè),且∠FAB=∠ABC,連接BF.
(1)求證:∠BCD=∠BEC;
(2)若BC=2,BD=1,求CE的長(zhǎng)及sin∠ABF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子中裝有除顏色外其余均相同的5個(gè)小球,其中紅球3個(gè),黑球2個(gè).
(1)若先從袋中取出x(x>0)個(gè)紅球,再從袋子中隨機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A,若A為必然事件,則x的值為 ;
(2)若從袋中隨機(jī)摸出2個(gè)球,正好紅球、黑球各1個(gè),用畫樹狀圖或列表法求這個(gè)事件的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為深化課程改革,某校為學(xué)生開設(shè)了形式多樣的社團(tuán)課程,為了解部分社團(tuán)課程在學(xué)生中最受歡迎的程度,學(xué)校隨機(jī)抽取七年級(jí)部分學(xué)生進(jìn)行調(diào)查,從A:文學(xué)簽賞,B:科學(xué)探究,C:文史天地,D:趣味數(shù)學(xué)四門課程中選出你喜歡的課程(被調(diào)查者限選一項(xiàng)),并將調(diào)查結(jié)果繪制成兩個(gè)不完整的統(tǒng)計(jì)圖,如圖所示,根據(jù)以上信息,解答下列問題:
(1)本次調(diào)查的總?cè)藬?shù)為多少人,扇形統(tǒng)計(jì)圖中A部分的圓心角是多少度.
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)根據(jù)本次調(diào)查,該校七年級(jí)840名學(xué)生中,估計(jì)最喜歡“科學(xué)探究”的學(xué)生人數(shù)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)商店以2元的批發(fā)價(jià)進(jìn)了一批紀(jì)念品.經(jīng)調(diào)查發(fā)現(xiàn),每個(gè)定價(jià)3元,每天可以能賣出500件,而且定價(jià)每上漲0.1元,其銷售量將減少10件.根據(jù)規(guī)定:紀(jì)念品售價(jià)不能超過批發(fā)價(jià)的2.5倍.
(1)當(dāng)每個(gè)紀(jì)念品定價(jià)為3.5元時(shí),商店每天能賣出________件;
(2)如果商店要實(shí)現(xiàn)每天800元的銷售利潤(rùn),那該如何定價(jià)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=﹣在第二象限的圖象上有一點(diǎn)A,過點(diǎn)A作AB⊥x軸于點(diǎn)B,則S△AOB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是某市環(huán)城路的一段,AE,BF,CD都是南北方向的街道,其與環(huán)城路AC的交叉路口分別是A,B,C.經(jīng)測(cè)量花卉世界D位于點(diǎn)A的北偏東45°方向,點(diǎn)B的北偏東30°方向上,AB=2km,∠DAC=15°.
(1)求B,D之間的距離;
(2)求C,D之間的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com