【題目】如圖,在RtACB中,ACB=90°,以點(diǎn)A為圓心,AC長(zhǎng)為半徑的圓交AB于點(diǎn)D,BA的延長(zhǎng)線交A于點(diǎn)E,連接CE,CD,F(xiàn)是A上一點(diǎn),點(diǎn)F與點(diǎn)C位于BE兩側(cè),且∠FAB=∠ABC,連接BF.

(1)求證:∠BCD=∠BEC;

(2)若BC=2,BD=1,求CE的長(zhǎng)及sinABF的值.

【答案】(1)見解析;(2)CE=, sinABF=.

【解析】

(1)先利用等角的余角相等即可得出結(jié)論;

(2)先判斷出BDC∽△BCE得出比例式求出BE=4,DE=3,利用勾股定理求出CD,CE,再判斷出AFMBAC,進(jìn)而判斷出四邊形FNCA是矩形,求出FN,NC,即:BN,再用勾股定理求出BF,即可得出結(jié)論.

(1)∵∠ACB=90°,

∴∠BCD+ACD=90°,

DE是⊙A的直徑,

∴∠DCE=90°,

∴∠BEC+CDE=90°,

AD=AC,

∴∠CDE=ACD,

∴∠BCD=BEC,

(2)∵∠BCD=BEC,EBC=EBC,

∴△BDC∽△BCE,

,

BC=2,BD=1,

BE=4,EC=2CD,

DE=BE﹣BD=3,

RtDCE中,DE2=CD2+CE2=9,

CD=,CE=,

過點(diǎn)FFMABM,

∵∠FAB=ABC,FMA=ACB=90°,

∴△AFM∽△BAC,

,

DE=3,

AD=AF=AC=,AB=,

FM=,

過點(diǎn)FFNBCN,

∴∠FNC=90°,

∵∠FAB=ABC,

FABC,

∴∠FAC=ACB=90°,

∴四邊形FNCA是矩形,

FN=AC=,NC=AF=,

BN=,

RtFBN中,BF=,

RtFBM中,sinABF=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(n,﹣2),B(1,4)是一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn),直線AB與y軸交于點(diǎn)C.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物流公司要把3000噸貨物從M市運(yùn)到W市.(每日的運(yùn)輸量為固定值)

(1)從運(yùn)輸開始,每天運(yùn)輸?shù)呢浳飮崝?shù)y(單位:噸)與運(yùn)輸時(shí)間x(單位:天)之間有怎樣的函數(shù)關(guān)系式?

(2)因受到沿線道路改擴(kuò)建工程影響,實(shí)際每天的運(yùn)輸量比原計(jì)劃少20%,以致推遲1天完成運(yùn)輸任務(wù),求原計(jì)劃完成運(yùn)輸任務(wù)的天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)興趣小組研究某型號(hào)冷柜溫度的變化情況,發(fā)現(xiàn)該冷柜的工作過程是:當(dāng)溫度達(dá)到設(shè)定溫度時(shí),制冷停止,此后冷柜中的溫度開始逐漸上升,當(dāng)上升到時(shí),制冷開始,溫度開始逐漸下降,當(dāng)冷柜自動(dòng)制冷至時(shí),制冷再次停止,,按照以上方式循環(huán)進(jìn)行.同學(xué)們記錄內(nèi)9個(gè)時(shí)間點(diǎn)冷柜中的溫度)隨時(shí)間變化情況,制成下表:

時(shí)間

4

8

10

16

20

21

22

23

24

溫度/℃

1)如圖,在直角坐標(biāo)系中,描出上表數(shù)據(jù)對(duì)應(yīng)的點(diǎn),并畫出當(dāng)時(shí)溫度隨時(shí)間變化的函數(shù)圖象;

2)通過圖表分析發(fā)現(xiàn),冷柜中的溫度是時(shí)間的函數(shù).

①當(dāng)時(shí),寫出符合表中數(shù)據(jù)的函數(shù)解析式;

②當(dāng)時(shí),寫出符合表中數(shù)據(jù)的函數(shù)解析式;

3)當(dāng)前冷柜的溫度時(shí),冷柜繼續(xù)工作36分鐘,此時(shí)冷柜中的溫度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtACB中,ACB=90°,AC=BC,D是AB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A,B重合),連接CD,將CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到CE,連接DE,DE與AC相交于點(diǎn)F,連接AE.下列結(jié)論:①△ACE≌△BCD;②BCD=25°,則∠AED=65°;③DE2=2CFCA;④若AB=3,AD=2BD,則AF=.其中正確的結(jié)論是______.(填寫所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,邊上一點(diǎn),,,,點(diǎn),分別是,邊上的動(dòng)點(diǎn),且始終保持

1)求的長(zhǎng);

2)若四邊形為平行四邊形時(shí),求的周長(zhǎng);

3)將沿它的一條邊翻折,當(dāng)翻折前后兩個(gè)三角形組成的四邊形為菱形時(shí),求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線PQ同側(cè)有兩點(diǎn)M,N,點(diǎn)T在直線PQ上,若∠MTPNTQ,則稱點(diǎn)TM,N在直線PQ上的投射點(diǎn).

(1)如圖②,在RtABC中,∠B=60°,D為斜邊AB的中點(diǎn),EAC的中點(diǎn).求證:點(diǎn)DC,E在直線AB上的投射點(diǎn);

(2)如圖③,在正方形網(wǎng)格中,已知點(diǎn)A,B,C三點(diǎn)均在格點(diǎn)上,請(qǐng)僅用沒有刻度的直尺在AC上畫出點(diǎn)P,在BC上畫出點(diǎn)Q,使A,PBC上的投射點(diǎn)Q滿足CQ=2BQ;

(3)如圖④,在RtABC中,∠C=90°,ACBC,在AB,BC邊上是否分別存在點(diǎn)D,E,使點(diǎn)DE,CAB上的投射點(diǎn),點(diǎn)EA,DBC上的投射點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC 中,∠ACB=90°,AC=6,BC=4,點(diǎn)P是△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PAC=∠PCB,則線段BP長(zhǎng)的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=(x-3)2+k的圖象過A(-1,y1)、B(2,y2)、C(3+,y3)三點(diǎn),則y1、y2、y3的大小關(guān)系正確的是( )

A. y1>y2>y3 B. y2>y1>y3 C. y1>y3>y2 D. y3>y1>y2

查看答案和解析>>

同步練習(xí)冊(cè)答案