【題目】解方程

(1)

(2)

【答案】(1)x= (2)無(wú)解

【解析】

(1)首先方程兩邊同乘以2(x+3)去分母,然后再解一元一次方程可得x的值,再檢驗(yàn)即可;

(2)首先方程兩邊同乘以3(x-2)去分母,然后再解一元一次方程可得x的值,再檢驗(yàn)即可.

(1)

去分母得:4x+2(x+3)=7,

去括號(hào)得:4x+2x+6=7,

移項(xiàng)得:4x+2x=7﹣6,

合并同類(lèi)項(xiàng)得:6x=1,

把系數(shù)化為1得:x=

檢驗(yàn):把x=代入2(x+3)≠0,

∴分式方程的解為x=;

(2),

去分母得:3(5x﹣4)=4x+10﹣3(x﹣2),

去括號(hào)得:15x﹣12=4x+10﹣3x+6,

移項(xiàng)得:15x﹣4x+3x=10+6+12,

合并同類(lèi)項(xiàng)得:14x=28,

系數(shù)化為1得:x=2,

檢驗(yàn):把x=2代入3(x﹣2)=0,

∴分式方程無(wú)解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】仔細(xì)觀察下面由組成的圖案和算式,解答問(wèn)題:

1+3=4=22

1+3+5=9=32

1+3+5+7=16=42

1+3+5+7+9=25=52

(1)請(qǐng)計(jì)算:

1+3+5+7+9+ … +19= ;

(2)請(qǐng)猜想:

1+3+5+7+9+ … +(2n-1)+(2n+1)+(2n+3)= ;

(3)請(qǐng)用上述規(guī)律計(jì)算:

103+105+107+ … +2013+2015

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車(chē)間有60個(gè)工人,生產(chǎn)甲、乙兩種零件,每人每天平均能生產(chǎn)甲種零件24個(gè)或乙種零件12個(gè)已知每2個(gè)甲種零件和3個(gè)乙種零件配成一套,問(wèn)應(yīng)分配多少人生產(chǎn)甲種零件,多少人生產(chǎn)乙種零件,才能使每天生產(chǎn)的這兩種零件剛好配套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)E是線段CB上的異于B、C的動(dòng)點(diǎn),AF⊥AE交線段CD的延長(zhǎng)線于點(diǎn)F,EF與AD交于點(diǎn)M.

(1)求證:△ABE∽△ADF;
(2)若AE⊥BD,求BE長(zhǎng);
(3)若△AEM是以AE為腰的等腰三角形,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是直線,OAB上一點(diǎn),∠AOE是直角,∠FOD=90°,OB平分∠DOC,則圖中與∠DOE互余的角有__________個(gè);與∠DOE互補(bǔ)的角有___________個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,C=90°,把AB對(duì)折后,點(diǎn)A與點(diǎn)B重合,折痕為DE.

(1)若A=25°,求BDC的度數(shù).

(2)若AC=4,BC=2,求BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把三角形按如圖所示的規(guī)律拼圖案,其中第個(gè)圖案中有4個(gè)三角形,第個(gè)圖案中有6個(gè)三角形,第個(gè)圖案中有8個(gè)三角形,,按此規(guī)律排列下去,則第個(gè)圖案中三角形的個(gè)數(shù)為( )

A. 12 B. 14 C. 16 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合題。
(1)如圖1,在正方形ABCD中,點(diǎn)E,H分別在BC,AB上,AE與DH交于O,若AE=DH,求證:AE⊥DH;

(2)如圖2,在正方形ABCD中,點(diǎn)H,E,G,F(xiàn)分別在AB,BC,CD,DA上,EF與GH交于O,若EF=HG,探究線段EF與HG的位置關(guān)系,并說(shuō)明理由;

(3)如圖3所示,在(2)問(wèn)條件下,若HF∥GE,試探究線段FH、線段EG與線段EF的數(shù)量關(guān)系,并說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,DE∥AC,AE∥BD.

(1)求證:四邊形AODE是矩形;

(2)若AB=2,AC=2,求四邊形AODE的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案