【題目】如圖,在平面直角坐標(biāo)系中,拋物線與矩形AOBC的邊AC、BC分別交于點(diǎn)EFE3,4),且F8,)為拋物線的頂點(diǎn),將CEF沿著EF翻折,點(diǎn)C恰好落在邊OB上的點(diǎn)D處.

1)求該拋物線的解析式;

2)點(diǎn)P為線段ED上一動(dòng)點(diǎn),連接PF,當(dāng)PF平分∠EFD時(shí),求PD的長(zhǎng)度;

3)四邊形AODE1個(gè)單位/秒的速度沿著x軸向右運(yùn)動(dòng),當(dāng)點(diǎn)E與點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,運(yùn)動(dòng)后的四邊形AODEDEF重合部分的面積為S,請(qǐng)直接寫出St的函數(shù)關(guān)系式.

【答案】(1)y=x-82+;(2)PD=;(3)S=

【解析】

1)設(shè)拋物線解析式為,把E3,4)代入求出a=即可;

2)由折疊的性質(zhì)得:DF=CF,∠EDF=C=90°DE=CE=5,作EGOBG,則EG=OA=4OG=AE=3,由勾股定理得出,得出BD=2,設(shè)DF=CF=x,則BF=4-x,在RtBDF中,由勾股定理得出方程,解方程得出DF=CF=,由勾股定理求出,作PHEFH,由角平分線性質(zhì)得出PH=PD,證出PEH∽△FED,得出,即可得出結(jié)果;

3)分三種情況:當(dāng)0≤t≤3時(shí),此時(shí)重合部分為一個(gè)梯形;當(dāng)時(shí),此時(shí)D′E′DF的交點(diǎn)仍然在線段DF上,重合部分為一個(gè)梯形面積減去一個(gè)三角形的面積;當(dāng)時(shí),重合部分為DEF的面積減去一個(gè)三角形的面積.

解:(1)∵F8)為拋物線的頂點(diǎn),

∴設(shè)拋物線解析式為y=ax-82+,把E3,4)代入得:a3-82+=4,解得:a=,

∴該拋物線的解析式為:y=x-82+;

2)∵四邊形AOBC是矩形,

OB=AC=8OA=BC=4,∠OBC=C=90°,

AE=3,∴CE=5,

由折疊的性質(zhì)得:DF=CF,∠EDF=C=90°,DE=CE=5,

EGOBG,則EG=OA=4,OG=AE=3,

DG==3,

BD=OB-OG-DG=2,

設(shè)DF=CF=x,則BF=4-x,在RtBDF中,由勾股定理得:

22+4-x2=x2,解得:x=,

DF=CF=,∴EF===,

PHEFH

又∵PF平分∠EFD,∠PDF=90°

PH=PD,

∵∠PHE=EDF=90°,∠PEH=FED,

∴△PEH∽△FED

=,即=,解得:PH=,∴PD=;

3)分三種情況:如圖所示:

①當(dāng)0≤t≤3時(shí),DD'=EE'=t,由(2)知,∠EDF=90°,由平移可知,D'EDF,

cosFDB===

DM=,

設(shè)D'E'EF于點(diǎn)M和點(diǎn)N,過點(diǎn)NNQDE于點(diǎn)Q,則NQ=DM=

,

,

EQ=,MN=DQ=5-,

S=5-+5÷2=+4t;

②當(dāng)3t時(shí),D'EEF的交點(diǎn)在點(diǎn)F左側(cè),可知需要用梯形面積減去左邊一個(gè)小三角形的面積,類比①可得:

S=+4t-=

③當(dāng)時(shí),S=-=-+10

St的函數(shù)關(guān)系式為:

S=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,DBC邊上的一點(diǎn),EAD的中點(diǎn),過A點(diǎn)作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AFBD,連接BF

1)求證:BDCD;

2)不在原圖添加字母和線段,對(duì)ABC只加一個(gè)條件使得四邊形AFBD是菱形,寫出添加條件并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,以AB為直徑的⊙O分別與BC,AC相交于點(diǎn)DE,BDCD,過點(diǎn)D作⊙O的切線交邊AC于點(diǎn)F

1)求證:DFAC;

2)若⊙O的半徑為2CF1,求的長(zhǎng)(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市預(yù)測(cè)某飲料有發(fā)展前途,用1600元購(gòu)進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購(gòu)進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價(jià)比第一批貴2.

(1)第一批飲料進(jìn)貨單價(jià)多少元?

(2)若二次購(gòu)進(jìn)飲料按同一價(jià)格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價(jià)至少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是正ABC的外接圓,點(diǎn)D為圓上一點(diǎn),連接AD,分別過點(diǎn)B和點(diǎn)CAD延長(zhǎng)線的垂線,垂足分別為點(diǎn)E和點(diǎn)F,連接BD、CD,已知EB=3FC=2,現(xiàn)在有如下4個(gè)結(jié)論:①∠CDF=60°;②EDB∽△FDC;③BC=;④,其中正確的結(jié)論有(  )個(gè)

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,AB10cmcosB點(diǎn)M、N分別是邊BCAC上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M2cm/s的速度沿CB方向運(yùn)動(dòng),同時(shí)點(diǎn)N1cm/s的速度沿AC方向運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,四邊形ABMN的面積為S,則下列能大致反映St函數(shù)關(guān)系的圖象是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】賞中華詩(shī)詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國(guó)詩(shī)詞大會(huì)”,全校同時(shí)默寫50首古詩(shī)詞,每正確默寫出一首古詩(shī)詞得2分,結(jié)果有500名進(jìn)入決賽,從這500名的學(xué)生中隨機(jī)抽取50名學(xué)生進(jìn)行成績(jī)分析,根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:(最高分98分):

組別

成績(jī)x

頻數(shù)(人數(shù))

1

50x60

6

2

60x70

8

3

70x80

14

4

80x90

a

5

90x100

10

Ⅰ.第3組的具體分?jǐn)?shù)為:70,70,70,72,72,7474,74,76,76,78,7878,78

.50人得分平均數(shù)、中位數(shù)、眾數(shù)如表:

平均數(shù)

中位數(shù)

眾數(shù)

得分(分)

m

n

請(qǐng)結(jié)合圖表數(shù)據(jù)信息完成下列各題:

1)填空a   m   ;

2)將頻數(shù)分布直方圖補(bǔ)充完整;

3)若測(cè)試成績(jī)不低于80分為優(yōu)秀,估計(jì)進(jìn)入決賽的本次測(cè)試為的優(yōu)秀的學(xué)生有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

某商場(chǎng)用8萬(wàn)元購(gòu)進(jìn)一批新款襯衫,上架后很快銷售一空,商場(chǎng)又緊急購(gòu)進(jìn)第二批這種襯衫,數(shù)量是第一次的2倍,但進(jìn)價(jià)漲了4/件,結(jié)果共用去17.6萬(wàn)元.

(1)該商場(chǎng)第一批購(gòu)進(jìn)襯衫多少件?

(2)商場(chǎng)銷售這種襯衫時(shí),每件定價(jià)都是58元,剩至150件時(shí)按八折出售,全部售完.售完這兩批襯衫,商場(chǎng)共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形紙片,.對(duì)折矩形紙片,使重合,折痕為;展平后再過點(diǎn)折疊矩形紙片,使點(diǎn)落在上的點(diǎn),折痕相交于點(diǎn);再次展平,連接,,延長(zhǎng)于點(diǎn).以下結(jié)論:①;②;③;④是等邊三角形; 為線段上一動(dòng)點(diǎn),的中點(diǎn),則的最小值是.其中正確結(jié)論的序號(hào)是( ).

A. ①②④B. ①④⑤C. ①③④D. ①②③⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案