【題目】已知點E、F分別是四邊形ABCD邊AB、AD上的點,且DE與CF相交于點G.

(1)如圖①,若AB∥CD,AB=CD,∠A=90°,且ADDF=AEDC,求證:DE⊥CF:

(2)如圖②,若AB∥CD,AB=CD,且∠A=∠EGC時,求證:DECD=CFDA:

(3)如圖③,若BA=BC=3,DA=DC=4,設(shè)DE⊥CF,當(dāng)∠BAD=90°時,試判斷是否為定值,并證明.

【答案】(1)證明見解析 (2)證明見解析 (3)答案見解析

【解析】

(1)根據(jù)已知條件得到四邊形ABCD是矩形,由矩形的性質(zhì)得到∠A=FDC=90°,根據(jù)相似三角形的性質(zhì)得到∠CFD=AED,根據(jù)余角的性質(zhì)即可得到結(jié)論;
(2)根據(jù)已知條件得到DFG∽△DEA,推出,根據(jù)CGD∽△CDF,得到

,等量代換即可得到結(jié)論;
(3)過CCNADN,CMABAB延長線于M,連接BD,設(shè)CN=x,BAD≌△BCD,推出∠BCD=A=90°,證BCM∽△DCN,求出,在RtCMB中,由勾股定理得出BM2+CM2=BC2,解方程得到CN,證出AED∽△NFC,即可得出答案.

(1)證明:∵ABCD,AB=CD,A=90°,

∴四邊形ABCD是矩形,

∴∠A=FDC=90°,

ADDF=AEDC,

∴△AED∽△DFC,

∴∠CFD=AED

∵∠ADE+AED=90°,

∴∠ADE+CFD=90°,

∴∠DGF=90°,

DECF;

(2)證明:∵∠A=EGC,ADE=GDF,

∴△DFG∽△DEA,

ABCD,AB=CD,

∴四邊形ABCD是平行四邊形,∠AED=EDC,

∴∠B=ADC,

∵△DFG∽△DEA,

∴∠AED=DFG,

DFC=GDC,

∵∠DCG=FCD,

∴△CGD∽△CDF,

,

DECD=CFDA;

(3)解:為定值,

理由:過CCNADN,CMABAB延長線于M,連接BD,設(shè)CN=x,

∵∠BAD=90°,即ABAD,

∴∠A=M=CNA=90°,

∴四邊形AMCN是矩形,

AM=CN,AN=CM,

∵在BADBCD

∴△BAD≌△BCD(SSS),

∴∠BCD=A=90°,

∴∠ABC+ADC=180°,

∵∠ABC+CBM=180°,

∴∠MBC=ADC,

∵∠CND=M=90°,

∴△BCM∽△DCN,

,

RtCMB中,,BM=AM﹣AB=x﹣3,由勾股定理得:BM2+CM2=BC2

x=0(舍去),

∵∠A=FGD=90°,

∴∠AED+AFG=180°,

∵∠AFG+NFC=180°,

∴∠AED=CFN,

∵∠A=CNF=90°,

∴△AED∽△NFC,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AM//BN,∠A=600.點P是射線AM上一動點(與點A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.

(1)①∠ABN的度數(shù)是 ;②∵AM //BN,∴∠ACB=∠ ;

(2)求∠CBD的度數(shù);

(3)當(dāng)點P運動時,∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關(guān)系,并說明理由;若變化,請寫出變化規(guī)律.

(4)當(dāng)點P運動到使∠ACB=∠ABD時,∠ABC的度數(shù)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB=12,點MN是線段AB上的兩點,且AM=BN=2,點P是線段MN上的動點,分別以線段APBP為邊在AB的同側(cè)作正方形APDC、正方形PBFE,點GH分別是CD、EF的中點,點OGH的中點,當(dāng)P點從M點到N點運動過程中,OM+OB的最小值是( )

A.10B.12C.2 D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題:

1(-20)+(+3)+(-5)+(+7);

216-(-15)-4+(-5)

3(-12)×(-37)×

4)(-÷÷(-);

5)-30×()

6)-3[5 +1×0.6÷(-3]

7

8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù) y=的圖像經(jīng)過點A(-1,a),過點AABx軸,垂足為點B,△AOB的面積為.

1)求a、k的值;

2)若一次函數(shù)y=mx+n圖像經(jīng)過點A和反比例函數(shù)圖像上另一點,且與x軸交于M點,求AM的值:

3)在(2)的條件下,如果以線段AM為一邊作等邊△AMN,頂點N在一次數(shù)函數(shù)y=bx上,則b= ______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將含有45°角的直角三角板ABC和直尺如圖擺放在桌子上,然后分別過A、B兩個頂點向直尺作兩條垂線段AD,BE

1)請寫出圖中的一對全等三角形并證明;

2)你能發(fā)現(xiàn)并證明線段ADBEDE之間的關(guān)系嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場用14500元購進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價與銷售價如表(二)所示:

類別

成本價(元/箱)

銷售價(元/箱)

25

35

35

48

求:(1)購進(jìn)甲、乙兩種礦泉水各多少箱?

(2)該商場售完這500箱礦泉水,可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰三角形,且AC=BC,∠ACB=120°,在AB上取一點O,使OB=OC,以點O為圓心,OB為半徑作圓,過點C作CD∥AB交⊙O于點D,連接BD.

(1)猜想AC與⊙O的位置關(guān)系,并證明你的猜想;

(2)試判斷四邊形BOCD的形狀,并證明你的判斷;

(3)已知AC=6,求扇形OBC所圍成的圓錐的底面圓的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長分別為48的兩個正方形ABCDCEFG并排放在一起,連結(jié)BD并延長交EG于點T,交FG于點P,則GT的長為_____

查看答案和解析>>

同步練習(xí)冊答案