【題目】已知:等邊分別是上的動點,且,交于點

如圖1,當點分別在線段和線段上時,求的度數(shù);

如圖2,當點分別在線段和線段的延長線上時,求的度數(shù).

【答案】(1)∠CPE60°;(260°

【解析】

根據(jù)等邊三角形性質(zhì)得出∠BAC=ABC=ACB=60°,AB=AC,根據(jù)SAS證△AFC≌△CEB,推出∠ACF=∠CBE,根據(jù)三角形的外角性質(zhì)求出即可;

同理證明△AFC≌△CEB,推出∠F=∠E,根據(jù)三角形的外角性質(zhì)求出即可.

1)∵△ABC是等邊三角形,

∴∠BAC=ABC=ACB=60°,AB=AC,

∵在AFC和△CEB

,

AFC≌△CEBSAS),

∴∠ACF=∠CBE

=CBE+BCF

=ACF +BCF

=ACB

=60°;

2)同理在AFC和△CEB

,

AFC≌△CEBSAS),

∴∠F=∠E,,

=FBP+F

=EBA +E

=BAC

=60°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以直線AB上一點O為端點作射線OC,使∠AOC65°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE90°)

1)如圖,若直角三角板DOE的一邊OD放在射線OA上,則∠COE   ;

2)如圖,將直角三角板DOE繞點O順時針方向轉(zhuǎn)動到某個位置,若OC恰好平分∠AOE,求∠COD的度數(shù);

3)如圖,將直角三角板DOE繞點O任意轉(zhuǎn)動,如果OD始終在∠AOC的內(nèi)部,試猜想∠AOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知都是直角,它們有公共頂點

1)若,求的度數(shù).

2)判斷的大小關(guān)系,并說明理由.

3)猜想:有怎樣的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量(萬件)與銷售單價(元)之間的關(guān)系可以近似地看作一次函數(shù).(利潤=售價-制造成本)

(1)寫出每月的利潤(萬元)與銷售單價(元)之間的函數(shù)關(guān)系式;

(2)當銷售單價為多少元時,廠商每月獲得的利潤為440萬元

(3)根據(jù)相關(guān)部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于40元,如果廠商每月的制造成本不超過540萬元,那么當銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方形ABCD中,AD6cm,AB4cm,點EAD的中點.若點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BC上由點B向點C運動.

(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△AEP△BPQ是否全等,請說明理由,并判斷此時線段PE和線段PQ的位置關(guān)系;

(2)若點Q的運動速度與點P的運動速度相等,運動時間為t秒,設(shè)△PEQ的面積為Scm2,請用t的代數(shù)式表示S;

(3)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△AEP△BPQ全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EBC邊上一點,連接AE,作AE的垂直平分線交ABG,交CDF.若DF=2,BG=4,則GF的長為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線上,它與軸交于,與軸交于是拋物線上、之間的一點,

1)當時,求拋物線的方程,并求出當面積最大時的的橫坐標。

2)當時,求拋物線的方程及的坐標,并求當面積最大時的橫坐標。

3)根據(jù)(1)、(2)推斷的橫坐標與的橫坐標有何關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是圓上一點,弦CDAB于點E,且DC=AD過點A作⊙O的切線,過點CDA的平行線,兩直線交于點FFC的延長線交AB的延長線于點G.

(1)求證:FG與⊙O相切;

(2)連接EF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店銷售單價分別為/筒、/筒的甲、乙兩種羽毛球.根據(jù)消費者需求,該網(wǎng)店決定用不超過元購進甲、乙兩種羽毛球共.且甲種羽毛球的數(shù)量大于乙種羽毛球數(shù)量的.已知甲、乙兩種羽毛球的進價分別為/筒、/筒。若設(shè)購進甲種羽毛球.

1)該網(wǎng)店共有幾種進貨方案?

2)若所購進羽毛球均可全部售出,求該網(wǎng)店所獲利潤(元)與甲種羽毛球進貨量(簡)之間的函數(shù)關(guān)系式,并求利潤的最大值

查看答案和解析>>

同步練習(xí)冊答案