【題目】已知:如圖,AB⊙O的直徑,BC是弦,OD⊥BC于點F,交⊙O于點D,連接AD、CD,∠E=∠ADC.

1)求證:BE⊙O的切線;

2)若BC=6,tanA =,求⊙O的半徑.

【答案】1)見解析(2⊙O的半徑為.

【解析】

1)要證BE⊙O的切線,即可轉化為證明∠ABE=90°即可;

2)連接BD,利用垂徑定理與圓周角定理可求出DF的長,設OB=x,則OF=x-DF,再利用勾股定理即可求出x的值,即⊙O的半徑.

1)證明:∵OD⊥BC

∴∠E+∠FBE=90°

∵∠ADC=∠ABC,∠ADC=∠E

∴∠ABC=∠E∴∠ABC+∠FBE=90°

∴BE⊙O相切;

2)連接BD,

OD⊥BC,

∠BCD=CBD,

∠A=∠BCD

∴∠CBD=∠A

tanA=tanCBD=,

FC=BF=3,

DF=2,

Rt△CFD中,設半徑OB=x,則OF=x-2,

解得

⊙O的半徑為.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示圖案是我國漢代數(shù)學家趙爽在注解《周髀算經》時給出的,人們稱它為趙爽弦圖.已知AE4,BE3,若向正方形ABCD內隨意投擲飛鏢(每次均落在正方形ABCD內,且落在正方形ABCD內任何一點的機會均等),則恰好落在正方形EFGH內的概率為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC,ABC=90°,AB=BC=,ABC繞點C逆時針旋轉60°,得到MNC,連接BM,BM的長是__.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為1的正方形ABCD,點P為邊AD上一動點(不與點A重合).連接BP,將ABP沿直線BP折疊,點A落在點A處,如果點A恰好落在正方形ABCD的對角線上,則AP的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+5x軸交于點B,與y軸交于點C,拋物線y=﹣x2+bx+c與直線y=﹣x+5交于B,C兩點,已知點D的坐標為(0,3

1)求拋物線的解析式;

2)點M,N分別是直線BCx軸上的動點,則當DMN的周長最小時,求點MN的坐標,并寫出DMN周長的最小值;

3)點P是拋物線上一動點,在(2)的條件下,是否存在這樣的點P,使∠PBA=∠ODN?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與x軸交于點A(﹣1,0)和Bm,0),且3m4,則下列說法:①b0;②a+cb;③b24ac;④2b3c;⑤1,正確的是( 。

A.①②④B.①③⑤C.②③④D.②③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y1x2+bx+c經過原點,交x軸于另一點A4,0),頂點為P

1)求拋物線y1的解析式和點P的坐標;

2)如圖2,點Q0,a)為y軸正半軸上一點,過點Qx軸的平行線交拋物線y1x2+bx+c于點M,N,將拋物線y1x2+bx+c沿直線MN翻折得到新的拋物線y2,點P落在點B處,若四邊形BMPN的面積等于,求a的值及點B的坐標;

3)如圖3,在(2)的條件下,在第一象限的拋物線y1x2+bx+c上取一點C,連接OC,作CDOBD,BEOCx軸于E,連接DE,若∠BEO=∠DEA,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以BC為斜邊作等腰直角三角形BCD,E是△BCD內一點,連接BEEC,BEAB,∠BEC+BAC180°.若EC1,tanABC ,則線段BD的長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在反比例函數(shù)yx0)的圖象上,點BX軸的負半軸上,ABAO13,線段OA的垂直平分線交線段AB于點C,△BOC的周長為23,則k的值為( )

A.60B.30C.60D.30

查看答案和解析>>

同步練習冊答案