【題目】小紅同學(xué)要測(cè)量,兩地的距離,但,之間有一水池,不能直接測(cè)量,于是她在,同一水平面上選取了一點(diǎn),點(diǎn)可直接到達(dá),兩地.她測(cè)量得到米,米,.請(qǐng)你幫助小紅同學(xué)求出,兩點(diǎn)之間的距離.
【答案】(米)
【解析】
首先過(guò)C作CD⊥AB交AB延長(zhǎng)線于點(diǎn)D,然后可得∠BCD=30°,再根據(jù)直角三角形的性質(zhì)可得BD=10米,然后利用勾股定理計(jì)算出CD長(zhǎng),再次利用勾股定理計(jì)算出AC長(zhǎng)即可.
解:過(guò)C作CD⊥AB交AB延長(zhǎng)線于點(diǎn)D,
∵∠ABC=120°,
∴∠CBD=60°,
在Rt△BCD中,∠BCD=90°-∠CBD=30°,
∴BD=BC=×20=10(米),
∴CD= (米),
∴AD=AB+BD=70+10=80米,
在Rt△ACD中,(米),
答:A、C兩點(diǎn)之間的距離為米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD⊥BC,EG⊥BC,垂足分別為D、G、AD平分∠BAC,求證:∠E=∠4.
證明:∵AD⊥BC,EG⊥BC(已知)
∴AD∥EG( )
∴∠2=∠3( )
∠1= (兩直線平行,同位角相等)
∵AD平分∠BAC(已知)
∴∠1=∠2( )
∴∠E=∠3( )
∵∠3=∠4( )
∴∠E=∠4(等量代換)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小瑩用一張長(zhǎng)方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,BC長(zhǎng)為10cm.當(dāng)小瑩折疊時(shí),頂點(diǎn)D落在BC邊上的點(diǎn)F處(折痕為AE).則此時(shí)EC=( )cm
A.4B.C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某飲料經(jīng)營(yíng)部每天的固定成本為200元,其銷(xiāo)售的飲料每瓶進(jìn)價(jià)為5元.銷(xiāo)售單價(jià)與日平均銷(xiāo)售的關(guān)系如下:
銷(xiāo)售單價(jià)(元) | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | 9 |
日平均銷(xiāo)售量(瓶) | 480 | 460 | 440 | 420 | 400 | 380 | 360 |
(1)若記銷(xiāo)售單價(jià)比每瓶進(jìn)價(jià)多x元,則銷(xiāo)售量為_____(用含x的代數(shù)式表示);
求日均毛利潤(rùn)(日均毛利潤(rùn)=(每瓶售價(jià)-每瓶進(jìn)價(jià))×日均銷(xiāo)售量-固定成本)y與x之間的函數(shù)關(guān)系式.
(2)若要使日均毛利潤(rùn)達(dá)到1400元,則銷(xiāo)售單價(jià)應(yīng)定為多少元?
(3)若要使日均毛利潤(rùn)達(dá)到最大,銷(xiāo)售單價(jià)應(yīng)定為多少元?最大日均毛利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為,C點(diǎn)的坐標(biāo)為,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著的路線移動(dòng)即:沿著長(zhǎng)方形移動(dòng)一周.
寫(xiě)出點(diǎn)B的坐標(biāo)______
當(dāng)點(diǎn)P移動(dòng)了4秒時(shí),描出此時(shí)P點(diǎn)的位置,并求出點(diǎn)P的坐標(biāo).
在移動(dòng)過(guò)程中,當(dāng)點(diǎn)P到x軸距離為5個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一次函數(shù),下列結(jié)論正確的是( )
A.函數(shù)值隨自變量的增大而增大
B.函數(shù)的圖象不經(jīng)過(guò)第一象限
C.函數(shù)的圖象向下平移4個(gè)單位長(zhǎng)度得的圖象
D.函數(shù)的圖象與軸的交點(diǎn)坐標(biāo)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0)是x軸正半軸上一點(diǎn),C是第四象限一點(diǎn),CB⊥y軸,交y軸負(fù)半軸于B(0,b),且(a-3)2+|b+4|=0,S四邊形AOBC=16.
(1)求C點(diǎn)坐標(biāo);
(2)如圖2,設(shè)D為線段OB上一動(dòng)點(diǎn),當(dāng)AD⊥AC時(shí),∠ODA的角平分線與∠CAE的角平分線的反向延長(zhǎng)線交于點(diǎn)P,求∠APD的度數(shù).
(3)如圖3,當(dāng)D點(diǎn)在線段OB上運(yùn)動(dòng)時(shí),作DM⊥AD交BC于M點(diǎn),∠BMD、∠DAO的平分線交于N點(diǎn),則D點(diǎn)在運(yùn)動(dòng)過(guò)程中,∠N的大小是否變化?若不變,求出其值,若變化,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn) A(﹣2,0),B(2,0),C(0,2),點(diǎn) D,點(diǎn)E分別是 AC,BC的中點(diǎn),將△CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)得到△CD′E′,及旋轉(zhuǎn)角為α,連接 AD′,BE′.
(1)如圖①,若 0°<α<90°,當(dāng) AD′∥CE′時(shí),求α的大小;
(2)如圖②,若 90°<α<180°,當(dāng)點(diǎn) D′落在線段 BE′上時(shí),求 sin∠CBE′的值;
(3)若直線AD′與直線BE′相交于點(diǎn)P,求點(diǎn)P的橫坐標(biāo)m的取值范圍(直接寫(xiě)出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),平行四邊形ABCD的邊BC在x軸上,D點(diǎn)在y軸上,C點(diǎn)坐標(biāo)為(2,0),BC=6,∠BCD=60°,點(diǎn)E是AB上一點(diǎn),AE=3EB,⊙P過(guò)D,O,C三點(diǎn),拋物線過(guò)點(diǎn)D,B,C三點(diǎn).
(1)求拋物線的解析式;
(2)求證:ED是⊙P的切線;
(3)若將△ADE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,E點(diǎn)的對(duì)應(yīng)點(diǎn)E′會(huì)落在拋物線上嗎?請(qǐng)說(shuō)明理由;
(4)若點(diǎn)M為此拋物線的頂點(diǎn),平面上是否存在點(diǎn)N,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com