【題目】如圖,已知OA=OB,OC=OD,AD和BC相交于點E,則圖中共有全等三角形的對數(shù)(  )

A. 2對 B. 3對 C. 4對 D. 5對

【答案】C

【解析】

由條件可證AOD≌△BOC,可得∠A=B,則可證明ACE≌△BDE,可得AE=BE,則可證明AOE≌△BOE,可得∠COE=DOE,可證COE≌△DOE,可求得答案.

解:


AODBOC
∴△AOD≌△BOC(SAS),
∴∠A=B,
OC=OD,OA=OB,
AC=BD,
ACEBDE
∴△ACE≌△BDE(AAS),
AE=BE,
AOEBOE
∴△AOE≌△BOE(SAS),
∴∠COE=DOE,
COEDOE
∴△COE≌△DOE(SAS),
故全等的三角形有4對,
故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙O的圓心A的坐標為(1,0),半徑為1,點P為直線y=x+3上的動點,過點P⊙A的切線,且點為B,則PB的最小值是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,平分于點,下列結論中:

;;④若,則,其中正確結論的個數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】過正方形(四邊都相等,四個角都是直角)的頂點作一條直線

圖(1 圖(2 圖(3

1)當不與正方形任何一邊相交時,過點于點,過點于點如圖(1),請寫出,之間的數(shù)量關系,并證明你的結論.

2)若改變直線的位置,使邊相交如圖(2),其它條件不變,,的關系會發(fā)生變化,請直接寫出,的數(shù)量關系,不必證明;

3)若繼續(xù)改變直線的位置,使邊相交如圖(3),其它條件不變,,,的關系又會發(fā)生變化,請直接寫出,的數(shù)量關系,不必證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線與直線交于點A,點A的橫坐標為,且直線與x軸交于點B,與y軸交于點D,直線與y軸交于點C.

(1)求點A的坐標及直線的函數(shù)表達式;

(2)連接,求的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在國家的宏觀調控下,某市的商品房成交價由今年3月份的5000/m2下降到5月份的4050/m2.

(1)4、5兩月平均每月降價的百分率是多少?

(2)如果房價繼續(xù)回落,按此降價的百分率,你預測到7月分該市的商品房成交均價是否會跌破3000/m2?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖直線對應的函數(shù)表達式為,直線軸交于點.直線軸交于點,且經(jīng)過點,直線交于點

1)求點,點的坐標;

2)求直線對應的函數(shù)表達式;

3)求的面積;

4)利用函數(shù)圖象寫出關于,的二元一次方程組的解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】賽龍舟是端午節(jié)的主要習俗,某市甲乙兩支龍舟隊在端午節(jié)期間進行劃龍舟比賽,從起點駛向終點,在整個行程中,龍舟離開起點的距離()與時間(分鐘)的對應關系如圖所示,請結合圖象解答下列問題:

1)起點與終點之間相距    

2)分別求甲、乙兩支龍舟隊的函數(shù)關系式;

3)甲龍舟隊出發(fā)多少時間時兩支龍舟隊相距200米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,∠ABC=90°,AD∥BC,以AB為直徑作⊙O恰好與CD相切.

(1)求證:AD+BC=CD;

(2)若EOA的中點,連結CE并延長交DA的延長線于F,當AE=AF時,求sin∠DCF.

查看答案和解析>>

同步練習冊答案